dc.contributor.author | Frankowska, Halina | |
dc.date.accessioned | 2014-10-30T12:50:10Z | |
dc.date.available | 2014-10-30T12:50:10Z | |
dc.date.issued | 1990 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/14077 | |
dc.language.iso | en | en |
dc.subject | differential inclusions | en |
dc.subject.ddc | 515 | en |
dc.title | A priori estimates for operational differential inclusions | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We prove a set-valued Gronwall lemma and a relaxation theorem for the semilinear differential inclusion x′ ϵAx + F(t, x), x(0) = x0, where A is the infinitesimal generator of a C0-semigroup on a separable Banach space X and F: [0, T] × X ↦ X is a set-valued map. This allows us to investigate infinitesimal generators of reachable sets and variational inclusions. The results are applied to a semilinear optimal control problem with end point constraints. | en |
dc.relation.isversionofjnlname | Journal of Differential Equations | |
dc.relation.isversionofjnlvol | 84 | en |
dc.relation.isversionofjnlissue | 1 | en |
dc.relation.isversionofjnldate | 1990 | |
dc.relation.isversionofjnlpages | 100-128 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1016/0022-0396(90)90129-D | en |
dc.relation.isversionofjnlpublisher | Elsevier | en |
dc.subject.ddclabel | Analyse | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |