• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Reflecting about Selecting Noninformative Priors

Kamary, Kaniav; Robert, Christian P. (2014), Reflecting about Selecting Noninformative Priors, Journal of Applied and Computational Mathematics, 3, 5, p. n°1000175. 10.4172/2168-9679.1000175

Type
Article accepté pour publication ou publié
External document link
http://dx.doi.org/10.4172/2168-9679.1000175
Date
2014
Journal name
Journal of Applied and Computational Mathematics
Volume
3
Number
5
Published in
Paris
Pages
n°1000175
Publication identifier
10.4172/2168-9679.1000175
Metadata
Show full item record
Author(s)
Kamary, Kaniav

Robert, Christian P.
Abstract (EN)
Following the critical review of Seaman III et al (2012), we re ect onwhat is presumably the most essential aspect of Bayesian statistics, namely theselection of a prior density. In some cases, Bayesian inference remains fairly stableunder a large range of noninformative prior distributions. However, as discussed bySeaman III et al (2012), there may also be unintended consequences of a choice of anoninformative prior and, these authors consider this problem ignored in Bayesianstudies. As they based their argumentation on four examples, we reassess theseexamples and their Bayesian processing via di erent prior choices. Our conclusionis to lower the degree of worry about the impact of the prior, exhibiting an overallstability of the posterior distributions. We thus consider that the warnings ofSeaman III et al (2012), while commendable, do not jeopardize the use of mostnoninformative priors.
Subjects / Keywords
Bayesian methods; Logistic model; Induced prior; Stability; Prior distribution
JEL
C11 - Bayesian Analysis: General

Related items

Showing items related by title and author.

  • Thumbnail
    A discussion on Bayesian analysis : Selecting Noninformative Priors 
    Kamary, Kaniav (2014) Document de travail / Working paper
  • Thumbnail
    Computational Solutions for Bayesian Inference in Mixture Models 
    Robert, Christian P.; Celeux, Gilles; Kamary, Kaniav; Malsiner-Walli, Gertraud; Marin, Jean-Michel (2019) Chapitre d'ouvrage
  • Thumbnail
    Testing hypotheses via a mixture estimation model 
    Kamary, Kaniav; Mengersen, Kerrie; Robert, Christian P.; Rousseau, Judith (2014) Document de travail / Working paper
  • Thumbnail
    Weakly informative reparameterisations for location-scale mixtures 
    Kamary, Kaniav; Lee, Jeong Eun; Robert, Christian P. (2018) Article accepté pour publication ou publié
  • Thumbnail
    Lois a priori non-informatives et la modélisation par mélange 
    Kamary, Kaniav (2016-03) Thèse
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo