Show simple item record

dc.contributor.authorCardaliaguet, Pierre
dc.contributor.authorJimenez, Chloé
dc.contributor.authorQuincampoix, Marc
dc.date.accessioned2014-10-02T09:35:01Z
dc.date.available2014-10-02T09:35:01Z
dc.date.issued2014
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/13979
dc.language.isoenen
dc.subjectWasserstein distanceen
dc.subjectpurificationen
dc.subjectincomplete informationen
dc.subjectzero-sum gamesen
dc.subjectDifferential gamesen
dc.subject.ddc519en
dc.titlePure and Random strategies in differential game with incomplete informationsen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherLaboratoire de Mathématiques de Bretagne Atlantique, CNRS-UMR 6205, Université de Brest;France
dc.description.abstractenWe investigate a two players zero sum differential game with incomplete information on the initial state: The first player has a private information on the initial state while the second player knows only a probability distribution on the initial state. This could be view as a generalization to differential games of the famous Aumann-Maschler framework for repeated games. In an article of the first author, the existence of the value in random strategies was obtained for a finite number of initial conditions (the probability distribution is a finite combination of Dirac measures). The main novelty of the present work consists in : first extending the result on the existence of a value in random strategies for infinite number of initial conditions and second - and mainly - proving the existence of a value in pure strategies when the initial probability distribution is regular enough (without atoms).en
dc.relation.isversionofjnlnameJournal of Dynamics and Games
dc.relation.isversionofjnlvol1en
dc.relation.isversionofjnlissue3en
dc.relation.isversionofjnldate2014
dc.relation.isversionofjnlpages363 - 375en
dc.relation.isversionofdoihttp://dx.doi.org/10.3934/jdg.2014.1.363en
dc.relation.isversionofjnlpublisherAIMSen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record