Microscopic derivation of an adiabatic thermodynamic transformation
hal.structure.identifier | ||
dc.contributor.author | Olla, Stefano
HAL ID: 18345 ORCID: 0000-0003-0845-1861 | * |
hal.structure.identifier | ||
dc.contributor.author | Simon, Marielle
HAL ID: 7207 | * |
dc.date.accessioned | 2014-10-01T14:33:45Z | |
dc.date.available | 2014-10-01T14:33:45Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0103-0752 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/13975 | |
dc.language.iso | en | en |
dc.subject | quasi static trasformations | |
dc.subject | hydrodynamic limit | |
dc.subject | thermodynamic entropy | |
dc.subject | Adiabatic thermodynamic transformations | |
dc.subject.ddc | 519 | en |
dc.title | Microscopic derivation of an adiabatic thermodynamic transformation | |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | Unité de Mathématiques Pures et Appliquées (UMPA-ENSL) http://www.umpa.ens-lyon.fr/;France | |
dc.description.abstracten | We obtain macroscopic adiabatic thermodynamic transformations by space-time scalings of a microscopic Hamiltonian dynamics subject to random collisions with the environment. The microscopic dynamics is given by a chain of oscillators subject to a varying tension (external force) and to collisions with external independent particles of ''infinite mass''. The effect of each collision is to change the sign of the velocity without changing the modulus. This way the energy is conserved by the resulting dynamics. After a diffusive space-time scaling and cross-graining, the profiles of volume and energy converge to the solution of a deterministic diffusive system of equations with boundary conditions given by the applied tension. This defines an irreversible thermodynamic transformation from an initial equilibrium to a new equilibrium given by the final tension applied. Quasi-static reversible adiabatic transformations are then obtained by a further time scaling. Then we prove that the relations between the limit work, internal energy and thermodynamic entropy agree with the first and second principle of thermodynamics. | |
dc.relation.isversionofjnlname | Brazilian Journal of Probability and Statistics | |
dc.relation.isversionofjnlvol | 29 | |
dc.relation.isversionofjnlissue | 2 | |
dc.relation.isversionofjnldate | 2015 | |
dc.relation.isversionofjnlpages | 540-564 | |
dc.relation.isversionofdoi | 10.1214/14-BJPS275 | |
dc.identifier.urlsite | https://arxiv.org/abs/1409.6424v2 | |
dc.relation.isversionofjnlpublisher | N. Zanichelli | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.description.submitted | non | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | oui | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.relation.Isversionofjnlpeerreviewed | oui | |
dc.date.updated | 2016-07-22T12:29:01Z | |
hal.author.function | aut | |
hal.author.function | aut |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |