• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

The Goh necessary optimality conditions for the Mayer problem with control constraints

Frankowska, Hélène; Tonon, Daniela (2013), The Goh necessary optimality conditions for the Mayer problem with control constraints, IEEE 52nd Annual Conference on Decision and Control (CDC), 2013 - Proceedings, IEEE, p. 538-543. http://dx.doi.org/10.1109/CDC.2013.6759937

Type
Communication / Conférence
External document link
https://hal.archives-ouvertes.fr/hal-01067270
Date
2013
Conference title
IEEE 52nd Annual Conference on Decision and Control (CDC), 2013
Conference date
2013-12
Conference city
Firenze
Conference country
Italie
Book title
IEEE 52nd Annual Conference on Decision and Control (CDC), 2013 - Proceedings
Publisher
IEEE
ISBN
978-1-4673-5714-2
Pages
538-543
Publication identifier
http://dx.doi.org/10.1109/CDC.2013.6759937
Metadata
Show full item record
Author(s)
Frankowska, Hélène
Tonon, Daniela
Abstract (EN)
The well known Goh second order necessary optimality conditions in optimal control theory concern singular optimal controls taking values in the interior of a set of controls U. In this paper we investigate these conditions for the Mayer problem when U is a convex polytope or a closed subset of class C2 for an integrable optimal control u( ) that may take values in the boundary of U. This is indeed a frequent situation in optimal control and for this reason the understanding of this issue is crucial for the theory of second order optimality conditions. Applying the Goh transformation we derive necessary conditions on tangent subspace to U at u(t) for almost all t's. In the presence of an endpoint constraint, if the Mayer problem is calm, then similar second order necessary optimality conditions are satisfied whenever the maximum principle is abnormal. If it is normal, then analogous results hold true on some smaller subspaces.
Subjects / Keywords
Mayer problem; Goh transformation; singular optimal control; maximum principle

Related items

Showing items related by title and author.

  • Thumbnail
    How to state necessary optimality conditions for control problems with deviating arguments? 
    Lassana, Samassi; Tahraoui, Rabah (2008) Article accepté pour publication ou publié
  • Thumbnail
    Value function and optimality conditions for semilinear control problems 
    Cannarsa, Piermarco; Frankowska, Halina (1992) Article accepté pour publication ou publié
  • Thumbnail
    Necessary conditions for infinite-dimensional control problems 
    Fattorini, H.O.; Frankowska, Halina (1991) Article accepté pour publication ou publié
  • Thumbnail
    A priori estimates for operational differential inclusions and necessary conditions for optimality 
    Frankowska, Halina (1990) Communication / Conférence
  • Thumbnail
    Optimality Conditions and Synthesis for the Minimum Time Problem 
    Cannarsa, Piermarco; Frankowska, Halina; Sinestrari, Carlo (2000) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo