• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Identifiability of Parameters in the Output Least Square Formulation

Chavent, Guy (1987), Identifiability of Parameters in the Output Least Square Formulation, in Walter, Eric, Identifiability of Parametric Models, Elsevier, p. 67-74. http://dx.doi.org/10.1016/B978-0-08-034929-9.50010-8

Type
Chapitre d'ouvrage
Date
1987
Book title
Identifiability of Parametric Models
Book author
Walter, Eric
Publisher
Elsevier
ISBN
978-0-08-034929-9
Number of pages
119
Pages
67-74
Publication identifier
http://dx.doi.org/10.1016/B978-0-08-034929-9.50010-8
Metadata
Show full item record
Author(s)
Chavent, Guy
Abstract (EN)
Given a mathematical model of a physical process, the parameter identification problem is defined as that of determining the parameters of the model that, for a known given input, yield a given measured output. Identifiability is often defined as the injectivity of the parameter → output mapping defined by the mathematical model used. Though already this definition is difficult to check in practical situations, it is not guaranteed, when it is satisfied, that parameters can be determined in a unique and stable way from the measurement. So we will review some recent definitions as OLS-Stability, OLS-identifiability and δ-Identifiability. Two different ways of obtaining OLSI will be given: either by studying the injectivity of the linearized parameter → output mapping (the “sensitivity matrix”), which will yield OLSI for finite dimensional parameters, but will usually be of little help for infinite dimensional parameters, or by using a regularization technique, which will be shown to yield OLSI for a large enough regularization parameter.
Subjects / Keywords
Identifiability; parameter estimation; regularization

Related items

Showing items related by title and author.

  • Thumbnail
    On the uniqueness of local minima for general abstract nonlinear least-squares problems 
    Chavent, Guy (1988) Article accepté pour publication ou publié
  • Thumbnail
    Regularization of linear least squares problems by total bounded variation 
    Chavent, Guy; Kunisch, Karl (1997) Article accepté pour publication ou publié
  • Thumbnail
    Generalized sentinels defined via least squares 
    Chavent, Guy (1995) Article accepté pour publication ou publié
  • Thumbnail
    Global line search strategies for nonlinear least squares problems based on curvature and projected curvature 
    Al Khoury, Philippe; Chavent, Guy (2006) Communication / Conférence
  • Thumbnail
    A geometrical theory for nonlinear least squares problems 
    Chavent, Guy (1991) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo