• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Multi-parameter Analysis for Local Graph Partitioning Problems: Using Greediness for Parameterization

Bonnet, Édouard; Escoffier, Bruno; Paschos, Vangelis; Tourniaire, Emeric (2015), Multi-parameter Analysis for Local Graph Partitioning Problems: Using Greediness for Parameterization, Algorithmica, 71, 3, p. 566-580. http://dx.doi.org/10.1007/s00453-014-9920-6

View/Open
ipec2013_submission_10.pdf (763.5Kb)
Type
Article accepté pour publication ou publié
Date
2015
Journal name
Algorithmica
Volume
71
Number
3
Publisher
Springer
Pages
566-580
Publication identifier
http://dx.doi.org/10.1007/s00453-014-9920-6
Metadata
Show full item record
Author(s)
Bonnet, Édouard cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Escoffier, Bruno
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Paschos, Vangelis
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Tourniaire, Emeric
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
We study the parameterized complexity of a broad class of problems called “local graph partitioning problems” that includes the classical fixed cardinality problems as max k -vertex cover, k -densest subgraph, etc. By developing a technique that we call “greediness-for-parameterization”, we obtain fixed parameter algorithms with respect to a pair of parameters k , the size of the solution (but not its value) and Δ , the maximum degree of the input graph. In particular, greediness-for-parameterization improves asymptotic running times for these problems upon random separation (that is a special case of color coding) and is more intuitive and simple. Then, we show how these results can be easily extended for getting standard-parameterization results (i.e., with parameter the value of the optimal solution) for a well known local graph partitioning problem.
Subjects / Keywords
Branching; Local partitioning problems; FPT; Parameterized complexity; Greedy

Related items

Showing items related by title and author.

  • Thumbnail
    Using greediness for parameterization: the case of max and min (k, n − k)-cut 
    Bonnet, Édouard; Escoffier, Bruno; Paschos, Vangelis; Tourniaire, Emeric (2012) Document de travail / Working paper
  • Thumbnail
    Purely combinatorial approximation algorithms for maximum k -vertex cover in bipartite graphs 
    Bonnet, Edouard; Escoffier, Bruno; Paschos, Vangelis; Stamoulis, Georgios (2018) Article accepté pour publication ou publié
  • Thumbnail
    A 0.821-Ratio Purely Combinatorial Algorithm for Maximum k-vertex Cover in Bipartite Graphs 
    Bonnet, Edouard; Escoffier, Bruno; Paschos, Vangelis; Stamoulis, Giorgios (2016) Communication / Conférence
  • Thumbnail
    Approximating MAX SAT by Moderately Exponential and Parameterized Algorithms 
    Escoffier, Bruno; Paschos, Vangelis; Tourniaire, Emeric (2014) Article accepté pour publication ou publié
  • Thumbnail
    Super-polynomial approximation branching algorithms 
    Escoffier, Bruno; Paschos, Vangelis; Tourniaire, Emeric (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo