• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Rates of Convergence for a Bayesian Level Set Estimation

Gayraud, Ghislaine; Rousseau, Judith (2005), Rates of Convergence for a Bayesian Level Set Estimation, Scandinavian Journal of Statistics, 32, 4, p. 639-660. http://dx.doi.org/10.1111/j.1467-9469.2005.00448.x

Type
Article accepté pour publication ou publié
Date
2005
Journal name
Scandinavian Journal of Statistics
Volume
32
Number
4
Publisher
Wiley
Pages
639-660
Publication identifier
http://dx.doi.org/10.1111/j.1467-9469.2005.00448.x
Metadata
Show full item record
Author(s)
Gayraud, Ghislaine
Rousseau, Judith
Abstract (EN)
We are interested in estimating level sets using a Bayesian non-parametric approach, from an independent and identically distributed sample drawn from an unknown distribution. Under fairly general conditions on the prior, we provide an upper bound on the rate of convergence of the Bayesian level set estimate, via the rate at which the posterior distribution concentrates around the true level set. We then consider, as an application, the log-spline prior in the two-dimensional unit cube. Assuming that the true distribution belongs to a class of Hölder, we provide an upper bound on the rate of convergence of the Bayesian level set estimates. We compare our results with existing rates of convergence in the frequentist non-parametric literature: the Bayesian level set estimator proves to be competitive and is also easy to compute, which is of no small importance. A simulation study is given as an illustration.
Subjects / Keywords
Bayesian non-parametric estimation; convergence rates of the posterior distribution; level set

Related items

Showing items related by title and author.

  • Thumbnail
    Consistency results on nonparametric Bayesian estimation of level sets using spatial priors 
    Gayraud, Ghislaine; Rousseau, Judith (2007) Article accepté pour publication ou publié
  • Thumbnail
    Bayesian Optimal Adaptive Estimation Using a Sieve Prior 
    Arbel, Julyan; Gayraud, Ghislaine; Rousseau, Judith (2013) Article accepté pour publication ou publié
  • Thumbnail
    Rates of convergence for the posterior distributions of mixtures of Betas and adaptive nonparametric estimation of the density 
    Rousseau, Judith (2010) Article accepté pour publication ou publié
  • Thumbnail
    Rates of convergence for the posterior distributions of mixtures of betas and adaptive nonparamatric estimation of the density 
    Rousseau, Judith (2009) Communication / Conférence
  • Thumbnail
    On Bayesian Estimation of the Long-Memory Parameter in the FEXP-Model for Gaussian Time Series 
    Kruijer, Willem; Rousseau, Judith (2010) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo