Show simple item record

dc.contributor.authorLions, Pierre-Louis
dc.date.accessioned2014-08-26T13:47:43Z
dc.date.available2014-08-26T13:47:43Z
dc.date.issued1985
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/13827
dc.language.isoenen
dc.subjectMonge-Ampère equationsen
dc.subjectHamilton-Jacobi-Bellman equationsen
dc.subject.ddc515en
dc.titleTwo remarks on Monge-Ampere equationsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe consider real Monge-Ampère equations and we present two new properties of these equations. First, we show the existence of the «first eigenvalue of Monge-Ampère equation» i.e. we show the existence of a positive constant possessing all the properties of the first eigenvalue of a 2-nd order elliptic operator (positivity, uniqueness of the eigenfunction, maximum principle, bifurcation...).The second property concerns variational characterisations of solutions. Both properties are closely related to similar properties of the general class of Hamilton-Jacobi-Bellman equations.en
dc.relation.isversionofjnlnameAnnali di Matematica Pura ed Applicata
dc.relation.isversionofjnlvol142en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate1985
dc.relation.isversionofjnlpages263-275en
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/BF01766596en
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record