Show simple item record

dc.contributor.authorRochet, Jean-Charles
dc.date.accessioned2014-08-26T13:34:53Z
dc.date.available2014-08-26T13:34:53Z
dc.date.issued1987
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/13818
dc.language.isoenen
dc.subjectImplementation Problemen
dc.subjectRevealed Preference Theoryen
dc.subject.ddc519en
dc.titleA necessary and sufficient condition for rationalizability in a quasi-linear contexten
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenThe aim of this note is to give a simple characterization of the rationalizability of decision rules (or action profiles). The necessary and sufficient condition we obtain suggests interesting analogies between the Implementation Problem and Revealed Preference Theory. Two particular cases are examined: 1. (a) The one-dimensional context, which shows that our condition is a generalization of the monotonicity condition of Spence-Mirrlees, 2. (b) The linear set-up, which shows that rationalizability in multiple dimension requires more than monotonicity: it implies also symmetry conditions which are translated by Partial Differential Equations (analogue in this context of Slutsky equations for Revealed Preference Theory).en
dc.relation.isversionofjnlnameJournal of Mathematical Economics
dc.relation.isversionofjnlvol16en
dc.relation.isversionofjnlissue2en
dc.relation.isversionofjnldate1987
dc.relation.isversionofjnlpages191-200en
dc.relation.isversionofdoihttp://dx.doi.org/10.1016/0304-4068(87)90007-3en
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record