Show simple item record

dc.contributor.authorGoldschmidt, Christina*
dc.contributor.authorHaas, Bénédicte*
dc.date.accessioned2014-08-26T12:42:24Z
dc.date.available2014-08-26T12:42:24Z
dc.date.issued2015
dc.identifier.issn1083-6489
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/13810
dc.language.isoenen
dc.subjectgeneralized Mittag-Leffler distributions
dc.subjectDirichlet distributions
dc.subjectstable Lévy trees
dc.subjectline-breaking
dc.subject.ddc519en
dc.titleA line-breaking construction of the stable trees
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherDepartment of Statistics and Lady Margaret Hall, University of Oxford;Royaume-Uni
dc.description.abstractenWe give a new, simple construction of the α-stable tree for α∈(1,2]. We obtain it as the closure of an increasing sequence of R-trees inductively built by gluing together line-segments one by one. The lengths of these line-segments are related to the the increments of an increasing R+-valued Markov chain. For α=2, we recover Aldous' line-breaking construction of the Brownian continuum random tree based on an inhomogeneous Poisson process.
dc.publisher.cityParisen
dc.relation.isversionofjnlnameElectronic Journal of Probability
dc.relation.isversionofjnlvol20
dc.relation.isversionofjnldate2015
dc.relation.isversionofjnlpages24 p.
dc.relation.isversionofdoi10.1214/EJP.v20-3690
dc.identifier.urlsitehttps://arxiv.org/abs/1407.5691v1
dc.relation.isversionofjnlpublisherElectronic Journal of Probability and Electronic Communications in Probability
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.description.submittednonen
dc.description.ssrncandidatenon
dc.description.halcandidateoui
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2016-10-11T14:03:19Z
hal.person.labIds*
hal.person.labIds*


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record