• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Posterior concentration rates for empirical Bayes procedures, with applications to Dirichlet Process mixtures. Supplementary material

Donnet, Sophie; Rivoirard, Vincent; Rousseau, Judith; Scricciolo, Catia (2014), Posterior concentration rates for empirical Bayes procedures, with applications to Dirichlet Process mixtures. Supplementary material. https://basepub.dauphine.fr/handle/123456789/13667

Type
Document de travail / Working paper
Date
2014
Series title
Université Paris-Dauphine
Published in
Paris
Pages
4
Metadata
Show full item record
Author(s)
Donnet, Sophie cc
Rivoirard, Vincent
Rousseau, Judith
Scricciolo, Catia
Abstract (EN)
In this paper we provide general conditions to check on the model and the prior to derive posterior concentration rates for data-dependent priors (or empirical Bayes approaches). We aim at providing conditions that are close to the conditions provided in the seminal paper by \citet{ghosal:vdv:07}. We then apply the general theorem to two different settings: the estimation of a density using Dirichlet process mixtures of Gaussian random variables with base measure depending on some empirical quantities and the estimation of the intensity of a counting process under the Aalen model. A simulation study for inhomogeneous Poisson processes also illustrates our results. In the former case we also derive some results on the estimation of the mixing density and on the deconvolution problem. In the latter, we provide a general theorem on posterior concentration rates for counting processes with Aalen multiplicative intensity with priors not depending on the data. In this supplementary file, we present the Gibbs algorithm used in the numerical example.
Subjects / Keywords
posterior concentration rates; counting processes; Aalen model; Dirichlet process mixtures; Gibbs algorithm; Empirical Bayes
JEL
C11 - Bayesian Analysis: General

Related items

Showing items related by title and author.

  • Thumbnail
    Posterior concentration rates for empirical Bayes procedures, with applications to Dirichlet Process mixtures 
    Donnet, Sophie; Rivoirard, Vincent; Rousseau, Judith; Scricciolo, Catia (2018) Article accepté pour publication ou publié
  • Thumbnail
    Posterior concentration rates for counting processes with Aalen multiplicative intensities 
    Donnet, Sophie; Rivoirard, Vincent; Rousseau, Judith; Scricciolo, Catia (2017) Article accepté pour publication ou publié
  • Thumbnail
    On Convergence Rates of Empirical Bayes Procedures 
    Donnet, Sophie; Rousseau, Judith; Rivoirard, Vincent; Scricciolo, Catia (2014) Communication / Conférence
  • Thumbnail
    Posterior concentration rates for infinite dimensional exponential families 
    Rivoirard, Vincent; Rousseau, Judith (2012) Article accepté pour publication ou publié
  • Thumbnail
    Non parametric Bayesian estimation for Hawkes processes 
    Donnet, Sophie; Rousseau, Judith; Rivoirard, Vincent (2014) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo