Show simple item record

dc.contributor.authorDalibard, Anne-Laure
dc.date.accessioned2014-06-26T09:46:47Z
dc.date.available2014-06-26T09:46:47Z
dc.date.issued2006
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/13608
dc.description.abstractfrOn étudie ici la limite, quand ε→0ε→0, des solutions de l'équation View the MathML source∂tuε+divx[A(xε,uε)]−εΔxuε=0. Après avoir identifié le problème homogénéisé grâce à un développement asymptotique, on montre que uεuε se comporte dans View the MathML sourceLloc2 comme View the MathML sourcev(xε,u¯(t,x)) lorsque ε→0ε→0, où v est la solution d'un problème de la cellule et View the MathML sourceu¯ est solution du problème homogénéisé. La démonstration utilise les mesures de Young à deux échelles, une généralisation des mesures de Young adaptées aux problèmes d'homogénéisation à deux échelles.en
dc.language.isoenen
dc.subjectHomogenizationen
dc.subjectParabolic scalar conservation lawen
dc.subject.ddc515en
dc.titleHomogenization of a quasilinear parabolic equation with vanishing viscosityen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe study the limit as ε→0ε→0 of the solutions of the equation View the MathML source∂tuε+divx[A(xε,uε)]−εΔxuε=0. After computing the homogenized problem thanks to formal double-scale expansions, we prove that as ε goes to 0, uεuε behaves in View the MathML sourceLloc2 as View the MathML sourcev(xε,u¯(t,x)), where v is determined by a cell problem and View the MathML sourceu¯ is the solution of the homogenized problem. The proof relies on the use of two-scale Young measures, a generalization of Young measures adapted to two-scale homogenization problems.en
dc.relation.isversionofjnlnameJournal de mathématiques pures et appliquées
dc.relation.isversionofjnlvol86en
dc.relation.isversionofjnlissue2en
dc.relation.isversionofjnldate2006
dc.relation.isversionofjnlpages133-154en
dc.relation.isversionofdoihttp://dx.doi.org/10.1016/j.matpur.2006.04.001en
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record