Show simple item record

dc.contributor.authorLabrousse, Clémence
dc.contributor.authorMarco, Jean-Pierre
dc.date.accessioned2014-06-16T12:27:00Z
dc.date.available2014-06-16T12:27:00Z
dc.date.issued2014
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/13466
dc.language.isoenen
dc.subjectdynamical complexityen
dc.subjectentropyen
dc.subjectintegrabilityen
dc.subjectBott integrable Hamiltoniansen
dc.subject.ddc519en
dc.titlePolynomial entropies for Bott integrable Hamiltonian systemsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn this paper, we study the entropy of a Hamiltonian flow in restriction to an energy level where it admits a first integral which is nondegenerate in the sense of Bott. It is easy to see that for such a flow, the topological entropy vanishes. We focus on the polynomial and the weak polynomial entropies hpol and h pol * . We show that, under natural conditions on the critical levels of the Bott first integral and on the Hamiltonian function H, h pol * ∈ {0, 1} and hpol ∈ {0, 1, 2}. To prove this result, our main tool is a semi-global desingularization of the Hamiltonian system in the neighborhood of a polycycle.en
dc.relation.isversionofjnlnameRegular and Chaotic Dynamics
dc.relation.isversionofjnlvol19en
dc.relation.isversionofjnlissue3en
dc.relation.isversionofjnldate2014
dc.relation.isversionofjnlpages374-414en
dc.relation.isversionofdoihttp://dx.doi.org/10.1134/S1560354714030083en
dc.identifier.urlsitehttp://arxiv.org/abs/1207.4937v1en
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record