• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

On the Parametrized Integral of a Multifunction: The Unbounded Case

Hess, Christian (2007), On the Parametrized Integral of a Multifunction: The Unbounded Case, Set-Valued Analysis, 15, 1, p. 1-20. http://dx.doi.org/10.1007/s11228-006-0032-6

Type
Article accepté pour publication ou publié
Date
2007
Journal name
Set-Valued Analysis
Volume
15
Number
1
Publisher
Springer
Pages
1-20
Publication identifier
http://dx.doi.org/10.1007/s11228-006-0032-6
Metadata
Show full item record
Author(s)
Hess, Christian
Abstract (EN)
Integration of set-valued maps (alias multifunctions) depending on a parameter is revisited. Results of Artstein, and of Saint-Pierre and Sajid are extended to the case of set-valued maps whose values may be unbounded. In the general case, this is achieved assuming that the transition probabilities involved in the integration procedure are absolutely continuous with respect to some fixed probability measure. However, when the integrating probability measure does not depend on the parameter this hypothesis is shown to be unnecessary. On the other hand, an alternative proof of a result of Saint-Pierre and Sajid is provided for convex compact-valued multifunctions. An application is given to the control of chattering systems. It is an extension of a result of Artstein to the case of set-valued maps with unbounded values. The proof of the main results is simple and essentially relies on measurable selections arguments.
Subjects / Keywords
set-valued maps; integration of multifunctions; Aumann integral; transition probability; measurable selections; chattering controls; Radon–Nikodym property

Related items

Showing items related by title and author.

  • Thumbnail
    Tightness conditions and integrability of the sequential weak upper limit of a sequence of multifunctions 
    Saadoune, Mohamed; Hess, Christian; Castaing, Charles (2006-09) Chapitre d'ouvrage
  • Thumbnail
    Measurability and integrability of the weak upper limit of a sequence of multifunctions 
    Hess, Christian (1990) Article accepté pour publication ou publié
  • Thumbnail
    The Largest Class of Closed Convex Valued Multifunctions for which Effros Measurability and Scalar Measurability Coincide 
    Hess, Christian; Barbati, Alberto (1998) Article accepté pour publication ou publié
  • Thumbnail
    On multivalued martingales whose values may be unbounded: martingale selectors and mosco convergence 
    Hess, Christian (1991) Article accepté pour publication ou publié
  • Thumbnail
    A Lévy Type Martingale Convergence Theorem for Random Sets with Unbounded Values 
    Hess, Christian; Couvreux, Jérôme (1999) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo