Show simple item record

dc.contributor.authorGondran, Michel
dc.contributor.authorMinoux, Michel
dc.date.accessioned2014-06-02T08:12:04Z
dc.date.available2014-06-02T08:12:04Z
dc.date.issued2007
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/13385
dc.language.isoenen
dc.subjectDioïdsen
dc.subjectSemiringsen
dc.subjectFuzzy setsen
dc.subjectFuzzy algebrasen
dc.subjectPath algebrasen
dc.subjectBottleneck algebrasen
dc.subjectIdempotent analysisen
dc.subject.ddc003en
dc.titleDioïds and semirings: Links to fuzzy sets and other applicationsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenBesides the classical algebraic structures of groups, rings and fields which have long been the almost exclusive reference concepts used in mathematical modelling, other algebraic structures such as dioïds and semirings have emerged in the last two or three decades in connection with modelling and solving a rich variety of non-classical problems, e.g. in Decision Analysis, Fuzzy Set Theory, Operations Research, Automatic Control and Mathematical Physics. The present paper aims at providing an overview of applications of dioïd and semiring structures, stressing links with Fuzzy Sets and emphasizing linear algebraic problems (solving linear systems, computing eigenvalues and eigenvectors), non-classical path-finding problems (using algebras of endomorphisms) and connections between dioïd structure and nonlinear analysis (in view of solving problems in Mathematical Physics).en
dc.relation.isversionofjnlnameFuzzy Sets and Systems
dc.relation.isversionofjnlvol158en
dc.relation.isversionofjnlissue12en
dc.relation.isversionofjnldate2007
dc.relation.isversionofjnlpages1273-1294en
dc.relation.isversionofdoihttp://dx.doi.org/10.1016/j.fss.2007.01.016en
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelRecherche opérationnelleen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record