• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - Request a copy

Symmetry properties for positive solutions of elliptic equations with mixed boundary conditions

Berestycki, Henri; Pacella, Filomena (1989), Symmetry properties for positive solutions of elliptic equations with mixed boundary conditions, Journal of Functional Analysis, 87, 1, p. 177-211. http://dx.doi.org/10.1016/0022-1236(89)90007-4

Type
Article accepté pour publication ou publié
Date
1989
Nom de la revue
Journal of Functional Analysis
Volume
87
Numéro
1
Éditeur
Elsevier
Pages
177-211
Identifiant publication
http://dx.doi.org/10.1016/0022-1236(89)90007-4
Métadonnées
Afficher la notice complète
Auteur(s)
Berestycki, Henri
Pacella, Filomena
Résumé (EN)
In this paper we establish symmetry results for positive solutions of semilinear elliptic equations of the type Δu + f(u) = 0 with mixed boundary conditions in bounded domains. In particular we prove that any positive solution u of such an equation in a spherical sector ∑(α, R) is spherically symmetric if α, the amplitude of the sector, is such that 0 < α ⩽ π. By constructing counterexamples we show that this result is optimal in the sense that it does not hold for sectors bE(α, R) with amplitude π < α < 2π. More general symmetry properties are established for positive solutions in domains with axial symmetry. These results extend the well-known theorems of B. Gidas, W. M. Ni, and L. Nirenberg [Comm. Math. Phys.68 (1979), 209–243] to sector-like domains and mixed boundary conditions.
Mots-clés
elliptic equations

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Symmetry And Monotonicity Properties For Positive Solutions Of Semi-Linear Elliptic PDE's 
    Dolbeault, Jean; Felmer, Patricio (2000) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Monotonicity and symmetry of positive solutions to nonlinear elliptic equations : local moving planes and unique continuation 
    Dolbeault, Jean (1999) Document de travail / Working paper
  • Vignette de prévisualisation
    Nonlinear scalar field equations, II existence of infinitely many solutions 
    Berestycki, Henri; Lions, Pierre-Louis (1983) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints 
    Lasry, Jean-Michel; Lions, Pierre-Louis (1989) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    On the existence of L2-valued thermodynamic entropy solutions for a hyperbolic system with boundary conditions 
    Marchesani, Stefano; Olla, Stefano (2020) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo