Show simple item record

dc.contributor.authorFrankowska, Halina
dc.date.accessioned2014-05-02T12:53:46Z
dc.date.available2014-05-02T12:53:46Z
dc.date.issued1987
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/13232
dc.language.isoenen
dc.subjectdifferential inclusionen
dc.subjecttangent coneen
dc.subjectderivative of a set-valued mapen
dc.subjectconvex processen
dc.subjectvariational inclusionen
dc.subjectmaximum principleen
dc.subject.ddc519en
dc.titleThe Maximum Principle for an Optimal Solution to a Differential Inclusion with End Points Constraintsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe derive Pontryagin’s maximum principle for a general optimal control problem using the set-valued version of variational equation. We achieve this aim by exploiting an adequate differential calculus of set-valued maps. Furthermore, the calmness condition is replaced by a surjectivity condition involving reachable sets of the “set-valued linearization” of the initial control problem. Duality then provides both the “adjoint differential inclusion” and the maximum principle.en
dc.relation.isversionofjnlnameSIAM Journal on Control and Optimization
dc.relation.isversionofjnlvol25en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate1987
dc.relation.isversionofjnlpages145-157en
dc.relation.isversionofdoihttp://dx.doi.org/10.1137/0325010en
dc.relation.isversionofjnlpublisherSIAMen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record