Show simple item record

dc.contributor.authorMoulin, Hervé
dc.contributor.authorPeleg, B.
dc.date.accessioned2014-05-02T12:21:43Z
dc.date.available2014-05-02T12:21:43Z
dc.date.issued1982
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/13220
dc.language.isoenen
dc.subjectcooperative gamesen
dc.subject.ddc519en
dc.subject.classificationjelC71en
dc.titleCores of effectivity functions and implementation theoryen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn a committee where cooperative voting occurs, effectivity functions describe the blocking power of coalitions. It is a binary relation that says for each coalition T and each subset of outcomes B whether or not T can force the final outcome within B. The corresponding cooperative stability notion generalizes the familiar core of a simple game. We study those effectivity functions yielding a non-empty core for all preference profiles, of which additive effectivity functions are an example. This proves to be closely related to implementation by means of the strong equilibrium concept.en
dc.relation.isversionofjnlnameJournal of Mathematical Economics
dc.relation.isversionofjnlvol10en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate1982
dc.relation.isversionofjnlpages115-145en
dc.relation.isversionofdoihttp://dx.doi.org/10.1016/0304-4068(82)90009-Xen
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record