Show simple item record

dc.contributor.authorAubin, Jean-Pierre
dc.date.accessioned2014-04-29T14:16:06Z
dc.date.available2014-04-29T14:16:06Z
dc.date.issued1981
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/13176
dc.language.isoenen
dc.subjectcooperative gamesen
dc.subject.ddc519en
dc.titleLocally lipschitz cooperative gamesen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenA locally Lipschitz cooperative generalized game is described by its coalition worth function v defined on the set [0, 1]n of generalized (or fuzzy) coalitions of n players. We assume that v is positively homogeneous and locally Lipschitz. We propose the Clarke's generalized gradient ∂v(cN) of v at the coalition cN=(1,…,1) of all players as a set of solutions, and we study its property. We point out that it coincides with the core when v is super–additive and to the Shapley value when v is smooth.en
dc.relation.isversionofjnlnameJournal of Mathematical Economics
dc.relation.isversionofjnlvol8en
dc.relation.isversionofjnlissue3en
dc.relation.isversionofjnldate1981
dc.relation.isversionofjnlpages241-262en
dc.relation.isversionofdoihttp://dx.doi.org/10.1016/0304-4068(81)90004-5en
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record