hal.structure.identifier | University of British Columbia | |
dc.contributor.author | Clarke, Frank H. | * |
dc.date.accessioned | 2014-04-29T13:17:05Z | |
dc.date.available | 2014-04-29T13:17:05Z | |
dc.date.issued | 1976 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/13167 | |
dc.language.iso | en | en |
dc.subject | Control theory | en |
dc.subject | maximum principle | en |
dc.subject | trajectories | en |
dc.subject | calculus of variations | en |
dc.subject.ddc | 519 | en |
dc.title | Optimal solutions to differential inclusions | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We treat a control problem given in terms of a differential inclusion
x˙(t)∈E(t,x(t))
and develop necessary conditions for a minimum in the problem. These conditions are given in terms of certain normals to arbitrary closed sets, and require no smoothness or convexity in the problem. The results subsume related works that incorporate convexity assumptions. | en |
dc.relation.isversionofjnlname | Journal of Optimization Theory and Applications | |
dc.relation.isversionofjnlvol | 19 | en |
dc.relation.isversionofjnlissue | 3 | en |
dc.relation.isversionofjnldate | 1976 | |
dc.relation.isversionofjnlpages | 469-478 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1007/BF00941488 | en |
dc.relation.isversionofjnlpublisher | Springer | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |
hal.author.function | aut | |