Show simple item record

dc.contributor.authorNguyen, Van Hoang
dc.contributor.authorJankowiak, Gaspard
HAL ID: 2027
ORCID: 0000-0002-9025-1465
dc.date.accessioned2014-04-17T07:44:26Z
dc.date.available2014-04-17T07:44:26Z
dc.date.issued2014
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/13102
dc.language.isoenen
dc.subjectpseudodifferential operatorsen
dc.subjectnonlinear diffusionen
dc.subjectstereographic projectionen
dc.subjectbest constanten
dc.subjectHardy-Littlewood-Sobolev inequalityen
dc.subjectFractional Sobolev inequalityen
dc.subject.ddc515en
dc.titleFractional Sobolev and Hardy-Littlewood-Sobolev inequalitiesen
dc.typeDocument de travail / Working paper
dc.contributor.editoruniversityotherSchool of Mathematical Sciences [Tel Aviv] http://www.math.tau.ac.il/ Raymond and Beverly Sackler Faculty of Exact Sciences;Israël
dc.description.abstractenThis work focuses on an improved fractional Sobolev inequality with a remainder term involving the \HLS{} inequality which has been proved recently. By extending a recent result on the standard Laplacian to the fractional case, we offer a new, simpler proof and provide new estimates on the best constant involved. Using endpoint differentiation, we also obtain an improved version of a Moser-Trudinger-Onofri type inequality on the sphere. As an immediate consequence, we derive an improved version of the Onofri inequality on the Euclidean space using the stereographic projection.en
dc.publisher.nameUniversité Paris-Dauphineen
dc.publisher.cityParisen
dc.identifier.citationpages25en
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00972035en
dc.subject.ddclabelAnalyseen
dc.description.submittednonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record