• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Exponential convergence to equilibrium for the homogeneous Boltzmann equation for hard potentials without cut-off

Tristani, Isabelle (2014), Exponential convergence to equilibrium for the homogeneous Boltzmann equation for hard potentials without cut-off, Journal of Statistical Physics, 157, 3, p. 474-496. http://dx.doi.org/10.1007/s10955-014-1066-z

View/Open
Boltzmann sans cut-off.pdf (363.8Kb)
Type
Article accepté pour publication ou publié
Date
2014
Journal name
Journal of Statistical Physics
Volume
157
Number
3
Publisher
Kluwer Academic Publishers etc.
Pages
474-496
Publication identifier
http://dx.doi.org/10.1007/s10955-014-1066-z
Metadata
Show full item record
Author(s)
Tristani, Isabelle
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
This paper deals with the long time behavior of solutions to the spatially homogeneous Boltzmann equation. The interactions considered are the so-called (non cut-off with a moderate angular singularity and non mollified) hard potentials. We prove an exponential in time convergence towards the equilibrium, improving results of Villani (Commun Math Phys 234(3): 455–490, 2003) where a polynomial decay to equilibrium is proven. The basis of the proof is the study of the linearized equation for which we prove a new spectral gap estimate in a L1 space with a polynomial weight by taking advantage of the theory of enlargement of the functional space for the semigroup decay developed by Gualdani et al. (http://hal.archives-ouvertes.fr/ccsd-00495786, 2013). We then get our final result by combining this new spectral gap estimate with bilinear estimates on the collisional operator that we establish.
Subjects / Keywords
dissipativity; Boltzmann equation without cut-off; long-time asymptotic; exponential rate of convergence; hard potentials; spectral gap

Related items

Showing items related by title and author.

  • Thumbnail
    Cauchy theory and exponential stability for inhomogeneous boltzmann equation for hard potentials without cut-off 
    Hérau, Frédéric; Tonon, Daniela; Tristani, Isabelle (2017) Document de travail / Working paper
  • Thumbnail
    Regularization estimates and Cauchy theory for inhomogeneous Boltzmann equation for hard potentials without cut-off 
    Hérau, Frédéric; Tonon, Daniela; Tristani, Isabelle (2020) Article accepté pour publication ou publié
  • Thumbnail
    Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials 
    Mouhot, Clément (2006) Article accepté pour publication ou publié
  • Thumbnail
    Exponential convergence to equilibrium for the homogeneous Landau equation with hard potentials 
    Carrapatoso, Kleber (2015) Article accepté pour publication ou publié
  • Thumbnail
    Regularity theory for the spatially homogeneous Boltzmann equation with cut-off 
    Mouhot, Clément; Villani, Cédric (2004) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo