• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - No thumbnail

Geodesics on Shape Spaces with Bounded Variation and Sobolev Metrics

Nardi, Giacomo; Peyré, Gabriel; Vialard, François-Xavier (2016), Geodesics on Shape Spaces with Bounded Variation and Sobolev Metrics, SIAM Journal on Imaging Sciences, 9, 1, p. 238-274. 10.1137/15100518X

Type
Article accepté pour publication ou publié
Lien vers un document non conservé dans cette base
https://arxiv.org/abs/1402.6504v8
Date
2016
Nom de la revue
SIAM Journal on Imaging Sciences
Volume
9
Numéro
1
Éditeur
Society for Industrial and Applied Mathematics
Ville d’édition
Paris
Pages
238-274
Identifiant publication
10.1137/15100518X
Métadonnées
Afficher la notice complète
Auteur(s)
Nardi, Giacomo
Peyré, Gabriel
Vialard, François-Xavier
Résumé (EN)
This paper studies the space of $BV^2$ planar curves endowed with the $BV^2$ Finsler metric over its tangent space of displacement vector fields. Such a space is of interest for applications in image processing and computer vision because it enables piecewise regular curves that undergo piecewise regular deformations, such as articulations. The main contribution of this paper is the proof of the existence of a shortest path between any two $BV^2$ curves for this Finsler metric. % The method of proof relies on the construction of a martingale on a space satisfying the Radon-Nikodym property and on the invariance under reparametrization of the Finsler metric. This method applies more generally to similar cases such as the space of curves with $H^k$ metrics for $k\geq 2$ integer. When $k \geq 2$ is integer, this space has a strong Riemannian structure and is geodesically complete. Thus, our result shows that the exponential map is surjective, which is complementary to geodesic completeness in infinite dimensions. We propose a finite element discretization of the minimal geodesic problem, and use a gradient descent method to compute a stationary point of a regularized energy. Numerical illustrations shows the qualitative difference between $BV^2$ and $H^2$ geodesics.
Mots-clés
BV 2-curves; Martingale; Geodesics; shape registration

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    A Second-order Total Variation Metric on the Space of Immersed Curves 
    Vialard, François-Xavier; Peyré, Gabriel; Nardi, Giacomo (2014) Document de travail / Working paper
  • Vignette de prévisualisation
    Finsler Steepest Descent with Applications to Piecewise-regular Curve Evolution 
    Nardi, Giacomo; Vialard, François-Xavier; Peyré, Gabriel; Charpiat, Guillaume (2013) Document de travail / Working paper
  • Vignette de prévisualisation
    Piecewise rigid curve deformation via a Finsler steepest descent 
    Peyré, Gabriel; Charpiat, Guillaume; Nardi, Giacomo; Vialard, François-Xavier (2015) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces 
    Ehrlacher, Virginie; Lombardi, Damiano; Mula, Olga; Vialard, François-Xavier (2019) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    An Interpolating Distance between Optimal Transport and Fisher-Rao 
    Chizat, Lénaïc; Peyré, Gabriel; Schmitzer, Bernhard; Vialard, François-Xavier (2010) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo