Universality of trap models in the ergodic time scale
Jara, Milton; Landim, Claudio; Teixeira, Augusto (2014), Universality of trap models in the ergodic time scale, Annals of Probability, 42, 6, p. 2497-2557
Type
Article accepté pour publication ou publiéExternal document link
http://arxiv.org/abs/1208.5675v1Date
2014Journal name
Annals of ProbabilityVolume
42Number
6Publisher
IMS
Pages
2497-2557
Metadata
Show full item recordAbstract (EN)
Consider a sequence of possibly random graphs GN=(VN,EN), N≥1, whose vertices's have i.i.d. weights {WNx:x∈VN} with a distribution belonging to the basin of attraction of an α-stable law, 0<α<1. Let XNt, t≥0, be a continuous time simple random walk on GN which waits a \emph{mean} WNx exponential time at each vertex x. Under considerably general hypotheses, we prove that in the ergodic time scale this trap model converges in an appropriate topology to a K-process. We apply this result to a class of graphs which includes the hypercube, the d-dimensional torus, d≥2, random d-regular graphs and the largest component of super-critical Erd\"os-R\'enyi random graphs.Subjects / Keywords
trap modelRelated items
Showing items related by title and author.
-
Landim, Claudio; Jara, Milton; Quadros Teixeira, Augusto (2011) Article accepté pour publication ou publié
-
Landim, Claudio; Jara, Milton (2008) Article accepté pour publication ou publié
-
Nonequilibrium fluctuations for a tagged particle in mean-zero one-dimensional zero-range processes Jara, Milton; Landim, Claudio; Sethuraman, Sunder Article accepté pour publication ou publié
-
Jara, Milton; Landim, Claudio (2006) Article accepté pour publication ou publié
-
Landim, Claudio; Jara, Milton; Faggionato, Alessandra Article accepté pour publication ou publié