• français
    • English
  • français 
    • français
    • English
  • Connexion
JavaScript is disabled for your browser. Some features of this site may not work without it.
Accueil

Afficher

Cette collectionPar Date de CréationAuteursTitresSujetsNoms de revueToute la baseCentres de recherche & CollectionsPar Date de CréationAuteursTitresSujetsNoms de revue

Mon compte

Connexion

Statistiques

Afficher les statistiques d'usage

Parallel centerline extraction on the GPU

Thumbnail
Date
2014
Indexation documentaire
Intelligence artificielle
Subject
Virtual endoscopy; GPU techniques; Parallel algorithm; Centerline
Nom de la revue
Computers & Graphics
Volume
41
Date de publication
2014
Pages article
72-83
Nom de l'éditeur
Elsevier
DOI
http://dx.doi.org/10.1016/j.cag.2014.02.003
URI
https://basepub.dauphine.fr/handle/123456789/12928
Collections
  • CEREMADE : Publications
Métadonnées
Afficher la notice complète
Auteur
Chiarini, Alessandro
Codreanu, Valeriu
Dong, Feng
Yang, Po
Williams, David
Clapworthy, Gordon J.
Roerdink, Jos B.T.M.
Telea, Alexandru C.
Liu, Baoquan
Type
Article accepté pour publication ou publié
Résumé en anglais
Centerline extraction is important in a variety of visualization applications including shape analysis, geometry processing, and virtual endoscopy. Centerlines allow accurate measurements of length along winding tubular structures, assist automatic virtual navigation, and provide a path-planning system to control the movement and orientation of a virtual camera. However, efficiently computing centerlines with the desired accuracy has been a major challenge. Existing centerline methods are either not fast enough or not accurate enough for interactive application to complex 3D shapes. Some methods based on distance mapping are accurate, but these are sequential algorithms which have limited performance when running on the CPU. To our knowledge, there is no accurate parallel centerline algorithm that can take advantage of modern many-core parallel computing resources, such as GPUs, to perform automatic centerline extraction from large data volumes at interactive speed and with high accuracy. In this paper, we present a new parallel centerline extraction algorithm suitable for implementation on a GPU to produce highly accurate, 26-connected, one-voxel-thick centerlines at interactive speed. The resulting centerlines are as accurate as those produced by a state-of-the-art sequential CPU method [40], while being computed hundreds of times faster. Applications to fly through path planning and virtual endoscopy are discussed. Experimental results demonstrating centeredness, robustness and efficiency are presented.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Cette création est mise à disposition sous un contrat Creative Commons.