Show simple item record

dc.contributor.authorEkeland, Ivar
dc.date.accessioned2014-03-20T09:37:13Z
dc.date.available2014-03-20T09:37:13Z
dc.date.issued1974
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/12922
dc.language.isoenen
dc.subjectvariational principleen
dc.subject.ddc515en
dc.titleOn the variational principleen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenThe variational principle states that if a differentiable functional F attains its minimum at some point View the MathML source, then View the MathML source; it has proved a valuable tool for studying partial differential equations. This paper shows that if a differentiable function F has a finite lower bound (although it need not attain it), then, for every ϵ > 0, there exists some point uϵ, where View the MathML source, i.e., its derivative can be made arbitrarily small. Applications are given to Plateau's problem, to partial differential equations, to nonlinear eigenvalues, to geodesics on infinite-dimensional manifolds, and to control theory.en
dc.relation.isversionofjnlnameJournal of Mathematical Analysis and Applications
dc.relation.isversionofjnlvol47en
dc.relation.isversionofjnlissue2en
dc.relation.isversionofjnldate1974
dc.relation.isversionofjnlpages324-353en
dc.relation.isversionofdoihttp://dx.doi.org/10.1016/0022-247X(74)90025-0en
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record