Show simple item record

dc.contributor.authorCarlier, Guillaume
dc.date.accessioned2014-03-11T17:46:27Z
dc.date.available2014-03-11T17:46:27Z
dc.date.issued2008
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/12866
dc.language.isoenen
dc.subjectToland's dualityen
dc.subjectconvexity constrainten
dc.subjectoptimal transportationen
dc.subjectDC minimizationen
dc.subject.ddc519en
dc.titleRemarks on Toland's duality, convexity constraint and optimal transporten
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe show that minimizing the di erence of squared Wasserstein distances to two reference probability measures in a suitable set of probability measures is equivalent to a linear programming problem posed on set of convex functions (problem which has its own interest and motivations). This is naturally related to Toland's duality for the minimization of the di erence of convex (DC for short) functions. We therefore end the paper by some remarks on DC problems with a convex (or concave) dual in the sense of Toland.en
dc.relation.isversionofjnlnamePacific Journal of Optimization
dc.relation.isversionofjnlvol4en
dc.relation.isversionofjnlissue3en
dc.relation.isversionofjnldate2008
dc.relation.isversionofjnlpages423-432en
dc.relation.isversionofjnlpublisherYokohama Publishersen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record