• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

A Second-order Total Variation Metric on the Space of Immersed Curves

Vialard, François-Xavier; Peyré, Gabriel; Nardi, Giacomo (2014), A Second-order Total Variation Metric on the Space of Immersed Curves. https://basepub.dauphine.fr/handle/123456789/12792

Type
Document de travail / Working paper
External document link
http://hal.archives-ouvertes.fr/hal-00952672
Date
2014
Publisher
Université Paris-Dauphine
Published in
Paris
Pages
35
Metadata
Show full item record
Author(s)
Vialard, François-Xavier
Peyré, Gabriel
Nardi, Giacomo
Abstract (EN)
This paper studies the space of BV^2 planar curves endowed with the BV^2 Finsler metric over its tangent space of displacement vector fields. Such a space is of interest for applications in image processing and computer vision because it enables piecewise regular curves that undergo piecewise regular deformations, such as articulations. The main contribution of this paper is the proof of the existence of a shortest path between any two BV^2 curves for this Finsler metric. The method of proof relies on the construction of a martingale on a space satisfying the Radon- Nikodym property and on the invariance under reparametrization of the Finsler metric. This method applies more generally to similar cases such as the space of curves with H^s metrics for s > 3/2. When s >=2 is integer, this space has a strong Riemannian structure and is geodesically complete. Thus, our result shows that the exponential map is surjective, which is complementary to geodesic completeness in infinite dimensions. We propose a finite element discretization of the minimal geodesic problem, and use a gradient descent method to compute a stationary point of a relaxed energy. Numerical illustrations shows the qualitative difference between BV^2 and H^s geodesics.
Subjects / Keywords
shape registration; BV 2-curves; Martingale; Geodesics

Related items

Showing items related by title and author.

  • Thumbnail
    Geodesics on Shape Spaces with Bounded Variation and Sobolev Metrics 
    Nardi, Giacomo; Peyré, Gabriel; Vialard, François-Xavier (2016) Article accepté pour publication ou publié
  • Thumbnail
    Finsler Steepest Descent with Applications to Piecewise-regular Curve Evolution 
    Nardi, Giacomo; Vialard, François-Xavier; Peyré, Gabriel; Charpiat, Guillaume (2013) Document de travail / Working paper
  • Thumbnail
    Piecewise rigid curve deformation via a Finsler steepest descent 
    Peyré, Gabriel; Charpiat, Guillaume; Nardi, Giacomo; Vialard, François-Xavier (2015) Article accepté pour publication ou publié
  • Thumbnail
    Variational Second-Order Interpolation on the Group of Diffeomorphisms with a Right-Invariant Metric 
    Vialard, François-Xavier (2019) Chapitre d'ouvrage
  • Thumbnail
    Extension to Infinite Dimensions of a Stochastic Second-Order Model associated with the Shape Splines 
    Vialard, François-Xavier (2013) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo