Functional versions of Lp-affine surface area and entropy inequalities
dc.contributor.author | Caglar, Umut | |
dc.contributor.author | Fradelizi, Matthieu | |
dc.contributor.author | Guédon, Olivier
HAL ID: 176947 | |
dc.contributor.author | Lehec, Joseph
HAL ID: 11520 ORCID: 0000-0001-6182-9427 | |
dc.contributor.author | Schütt, Carsten | |
dc.contributor.author | Werner, Elisabeth | |
dc.date.accessioned | 2014-02-27T08:26:12Z | |
dc.date.available | 2014-02-27T08:26:12Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1073-7928 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/12767 | |
dc.language.iso | en | en |
dc.subject | affine isoperimetric inequalities | |
dc.subject | entropy | |
dc.subject | log- Sobolev inequalities | |
dc.subject.ddc | 515 | en |
dc.title | Functional versions of Lp-affine surface area and entropy inequalities | |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | Mathematisches Institut Universität Kiel;Allemagne | |
dc.contributor.editoruniversityother | Université Paris Est Laboratoire d’Analyse et de Mathématiques Appliquées (U MR 8050); | |
dc.contributor.editoruniversityother | Department of Mathematics Case Western Reserve University;États-Unis | |
dc.description.abstracten | In contemporary convex geometry, the rapidly developing Lp-Brunn Minkowskitheory is a modern analogue of the classical Brunn Minkowski theory. A cornerstoneof this theory is the Lp-affine surface area for convex bodies. Here, we introducea functional form of this concept, for log concave and s-concave functions. Weshow that the new functional form is a generalization of the original Lp-affinesurface area. We prove duality relations and affine isoperimetric inequalities for logconcave and s-concave functions. This leads to a new inverse log-Sobolevinequality for s-concave densities | |
dc.publisher.city | Paris | en |
dc.relation.isversionofjnlname | International Mathematics Research Notices | |
dc.relation.isversionofjnlvol | 2016 | |
dc.relation.isversionofjnlissue | 4 | |
dc.relation.isversionofjnldate | 2016 | |
dc.relation.isversionofjnlpages | 1223-1250 | |
dc.relation.isversionofdoi | 10.1093/imrn/rnv151 | |
dc.relation.isversionofjnlpublisher | Duke University Press | |
dc.subject.ddclabel | Analyse | en |
dc.description.submitted | oui | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | oui | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.relation.Isversionofjnlpeerreviewed | oui | |
dc.date.updated | 2017-01-03T16:13:40Z |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |