• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Functional versions of Lp-affine surface area and entropy inequalities

Caglar, Umut; Fradelizi, Matthieu; Guédon, Olivier; Lehec, Joseph; Schütt, Carsten; Werner, Elisabeth (2016), Functional versions of Lp-affine surface area and entropy inequalities, International Mathematics Research Notices, 2016, 4, p. 1223-1250. 10.1093/imrn/rnv151

Type
Article accepté pour publication ou publié
Date
2016
Journal name
International Mathematics Research Notices
Volume
2016
Number
4
Publisher
Duke University Press
Published in
Paris
Pages
1223-1250
Publication identifier
10.1093/imrn/rnv151
Metadata
Show full item record
Author(s)
Caglar, Umut
Fradelizi, Matthieu
Guédon, Olivier
Lehec, Joseph cc
Schütt, Carsten
Werner, Elisabeth
Abstract (EN)
In contemporary convex geometry, the rapidly developing Lp-Brunn Minkowskitheory is a modern analogue of the classical Brunn Minkowski theory. A cornerstoneof this theory is the Lp-affine surface area for convex bodies. Here, we introducea functional form of this concept, for log concave and s-concave functions. Weshow that the new functional form is a generalization of the original Lp-affinesurface area. We prove duality relations and affine isoperimetric inequalities for logconcave and s-concave functions. This leads to a new inverse log-Sobolevinequality for s-concave densities
Subjects / Keywords
affine isoperimetric inequalities; entropy; log- Sobolev inequalities

Related items

Showing items related by title and author.

  • Thumbnail
    Representation formula for the entropy and functional inequalities 
    Lehec, Joseph (2013) Article accepté pour publication ou publié
  • Thumbnail
    Transport-entropy inequalities and curvature in discrete-space Markov chains 
    Eldan, Ronen; Lee, James; Lehec, Joseph (2017) Chapitre d'ouvrage
  • Thumbnail
    On Poincare and logarithmic Sobolev inequalities for a class of singular Gibbs measures 
    Chafaï, Djalil; Lehec, Joseph (2018) Document de travail / Working paper
  • Thumbnail
    Some recent developments in functional inequalities 
    Schlichting, André; Menz, Georg; Léonard, Christian; Lehec, Joseph; Gozlan, Nathael; Boissard, Emmanuel (2014) Communication / Conférence
  • Thumbnail
    Functional inequalities: nonlinear flows and entropy methods as a tool for obtaining sharp and constructive results 
    Dolbeault, Jean (2021) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo