• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Adaptive, Anisotropic and Hierarchical cones of Discrete Convex functions

Mirebeau, Jean-Marie (2016), Adaptive, Anisotropic and Hierarchical cones of Discrete Convex functions, Numerische Mathematik, 132, 4, p. 807-853. 10.1007/s00211-015-0732-7

Type
Article accepté pour publication ou publié
Date
2016
Journal name
Numerische Mathematik
Volume
132
Number
4
Publisher
Springer
Published in
Paris
Pages
807-853
Publication identifier
10.1007/s00211-015-0732-7
Metadata
Show full item record
Author(s)
Mirebeau, Jean-Marie
Abstract (EN)
We introduce a new class of adaptive methods for optimization problems posed on the cone of convex functions. Among the various mathematical problems which possess such a formulation, the Monopolist problem (Rochet and Choné, Econometrica 66:783–826, 1998; Ekeland and Moreno-Bromberg, Numer Math 115:45–69, 2010) arising in economics is our main motivation. Consider a two dimensional domain Ω, sampled on a grid X of N points. We show that the cone Conv(X) of restrictions to X of convex functions on Ω is typically characterized by ≈N2 linear inequalities; a direct computational use of this description therefore has a prohibitive complexity. We thus introduce a hierarchy of sub-cones Conv(V) of Conv(X), associated to stencils V which can be adaptively, locally, and anisotropically refined. We show, using the arithmetic structure of the grid, that the trace U|X of any convex function U on Ω is contained in a cone Conv(V) defined by only O(Nln2N) linear constraints, in average over grid orientations. Numerical experiments for the Monopolist problem, based on adaptive stencil refinement strategies, show that the proposed method offers an unrivaled accuracy/complexity trade-off in comparison with existing methods. We also obtain, as a side product of our theory, a new average complexity result on edge flipping based mesh generation.
Subjects / Keywords
Convex optimization; Monopolist problem; Global convexity constraint

Related items

Showing items related by title and author.

  • Thumbnail
    Adaptive multiresolution analysis based on anisotropic triangulations 
    Cohen, Albert; Dyn, Nina; Hecht, Frédéric; Mirebeau, Jean-Marie (2012) Article accepté pour publication ou publié
  • Thumbnail
    Vessel Extraction Using Anisotropic Minimal Paths and Path Score 
    Chen, Da; Cohen, Laurent D.; Mirebeau, Jean-Marie (2014) Communication / Conférence
  • Thumbnail
    Vessel Tree Extraction using Radius-Lifted Keypoints Searching Scheme and Anisotropic Fast Marching Method 
    Chen, Da; Mirebeau, Jean-Marie; Cohen, Laurent D. (2016) Article accepté pour publication ou publié
  • Thumbnail
    On the Accuracy of Anisotropic Fast Marching 
    Mirebeau, Jean-Marie (2012) Document de travail / Working paper
  • Thumbnail
    Minimal Stencils for Discretizations of Anisotropic PDEs Preserving Causality or the Maximum Principle 
    Mirebeau, Jean-Marie (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo