• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Long-term planning versus short-term planning in the asymptotical location problem

Brancolini, Alessio; Buttazzo, Giuseppe; Santambrogio, Filippo; Stepanov, Eugene (2009), Long-term planning versus short-term planning in the asymptotical location problem, ESAIM. COCV, 15, 3, p. 509-524. http://dx.doi.org/10.1051/cocv:2008034

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/math/0612718v1
Date
2009
Journal name
ESAIM. COCV
Volume
15
Number
3
Publisher
Cambridge University Press
Pages
509-524
Publication identifier
http://dx.doi.org/10.1051/cocv:2008034
Metadata
Show full item record
Author(s)
Brancolini, Alessio
Buttazzo, Giuseppe
Santambrogio, Filippo
Stepanov, Eugene
Abstract (EN)
Given the probability measure ν over the given region $\Omega\subset \mathbb{R}^n$ , we consider the optimal location of a set Σ composed by n points in Ω in order to minimize the average distance $\Sigma\mapsto \int_\Omega \mathrm{dist}\,(x,\Sigma)\,{\rm d}\nu$ (the classical optimal facility location problem). The paper compares two strategies to find optimal configurations: the long-term one which consists in placing all n points at once in an optimal position, and the short-term one which consists in placing the points one by one adding at each step at most one point and preserving the configuration built at previous steps. We show that the respective optimization problems exhibit qualitatively different asymptotic behavior as $n\to\infty$ , although the optimization costs in both cases have the same asymptotic orders of vanishing.
Subjects / Keywords
Location problem; facility location; Fermat-Weber problem; k-median problem; sequential allocation; average distance functional; optimal transportation

Related items

Showing items related by title and author.

  • Thumbnail
    A Mass Transportation Model for the Optimal Planning of an Urban Region 
    Buttazzo, Giuseppe; Santambrogio, Filippo (2009) Article accepté pour publication ou publié
  • Thumbnail
    Short-term and Long-Term System Effects of Intermittent Renewables on Nuclear Energy and the Electricity Mix 
    Keppler, Jan-Horst; Cometto, Marco (2013) Communication / Conférence
  • Thumbnail
    Prise en charge de la perte d'autonomie des personnes âgées : une analyse des déterminants de l’institutionnalisation ou du maintien à domicile 
    Carrère, Amélie (2020-06-03) Thèse
  • Thumbnail
    Generalized solutions for the Euler equations in one and two dimensions 
    Bernot, Marc; Figalli, Alessio; Santambrogio, Filippo (2009) Article accepté pour publication ou publié
  • Thumbnail
    A Benamou-Brenier approach to branched transport 
    Santambrogio, Filippo; Buttazzo, Giuseppe; Brasco, Lorenzo (2011) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo