Show simple item record

dc.contributor.authorEmilion, Richard
dc.contributor.authorLévy, Gérard
dc.date.accessioned2014-02-18T16:05:11Z
dc.date.available2014-02-18T16:05:11Z
dc.date.issued2009
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/12687
dc.language.isoenen
dc.subjectAssociation ruleen
dc.subjectBernoulli distributionen
dc.subjectClassificationen
dc.subjectComplexityen
dc.subjectData miningen
dc.subjectFrequent itemseten
dc.subjectGalois latticeen
dc.subjectWinning coalitionen
dc.subject.ddc519en
dc.titleSize of random Galois lattices and number of closed frequent itemsetsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenGiven a sample of binary random vectors with i.i.d. Bernoulli(pp) components, that is equal to 1 (resp. 0) with probability pp (resp. 1−p1−p), we first establish a formula for the mean of the size of the random Galois lattice built from this sample, and a more complex one for its variance. Then, noticing that closed αα-frequent itemsets are in bijection with closed αα-winning coalitions, we establish similar formulas for the mean and the variance of the number of closed αα-frequent itemsets. This can be interesting for the study of the complexity of some data mining problems such as association rule mining, sequential pattern mining and classification.en
dc.relation.isversionofjnlnameDiscrete Applied Mathematics
dc.relation.isversionofjnlvol157en
dc.relation.isversionofjnlissue13en
dc.relation.isversionofjnldate2009
dc.relation.isversionofjnlpages2945–2957en
dc.relation.isversionofdoihttp://dx.doi.org/10.1016/j.dam.2009.02.025en
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record