• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Existence of solutions of the hyperbolic Keller-Segel model

Perthame, Benoît; Dalibard, Anne-Laure (2009), Existence of solutions of the hyperbolic Keller-Segel model, Transactions of the American Mathematical Society, 361, 5, p. 2319-2335. http://dx.doi.org/10.1090/S0002-9947-08-04656-4

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/math/0612485v1
Date
2009
Journal name
Transactions of the American Mathematical Society
Volume
361
Number
5
Publisher
AMS
Pages
2319-2335
Publication identifier
http://dx.doi.org/10.1090/S0002-9947-08-04656-4
Metadata
Show full item record
Author(s)
Perthame, Benoît cc
Dalibard, Anne-Laure
Abstract (EN)
We are concerned with the hyperbolic Keller-Segel model with quorum sensing, a model describing the collective cell movement due to chemical signalling with a flux limitation for high cell densities. This is a first order quasilinear equation, its flux depends on space and time via the solution to an elliptic PDE in which the right-hand side is the solution to the hyperbolic equation. This model lacks strong compactness or contraction properties. Our purpose is to prove the existence of an entropy solution obtained, as usual, in passing to the limit in a sequence of solutions to the parabolic approximation. The method consists in the derivation of a kinetic formulation for the weak limit. The specific structure of the limiting kinetic equation allows for a `rigidity theorem', which identifies some property of the solution (which might be nonunique) to this kinetic equation. This is enough to deduce a posteriori the strong convergence of a subsequence.
Subjects / Keywords
Keller-Segel system; kinetic formulation; compactness; entropy inequalities

Related items

Showing items related by title and author.

  • Thumbnail
    Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions 
    Blanchet, Adrien; Dolbeault, Jean; Perthame, Benoît (2006) Article accepté pour publication ou publié
  • Thumbnail
    Optimal critical mass in the two dimensional Keller–Segel model in R2 
    Dolbeault, Jean; Perthame, Benoît (2004) Article accepté pour publication ou publié
  • Thumbnail
    Large mass self-similar solutions of the parabolic–parabolic Keller–Segel model of chemotaxis 
    Biler, Piotr; Corrias, Lucilla; Dolbeault, Jean (2011) Article accepté pour publication ou publié
  • Thumbnail
    Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates 
    Lions, Pierre-Louis; Perthame, Benoît; Souganidis, Panagiotis E. (1996) Article accepté pour publication ou publié
  • Thumbnail
    Stationary solutions of Keller-Segel type crowd motion and herding models: multiplicity and dynamical stability 
    Dolbeault, Jean; Jankowiak, Gaspard; Markowich, Peter (2015) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo