Show simple item record

dc.contributor.authorAftalion, Amandine
dc.contributor.authorRoyo-Letelier, Jimena
dc.date.accessioned2014-02-11T15:02:24Z
dc.date.available2014-02-11T15:02:24Z
dc.date.issued2015
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/12635
dc.language.isoenen
dc.subjectenergy modelingen
dc.subjecttwo component Bose–Einstein condensateen
dc.subject.ddc515en
dc.titleA minimal interface problem arising from a two component Bose–Einstein condensate via Γ -convergenceen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe consider the energy modeling a two component Bose–Einstein condensate in the limit of strong coupling and strong segregation. We prove the Γ -convergence to a perimeter minimization problem, with a weight given by the density of the condensate. In the case of equal mass for the two components, this leads to symmetry breaking for the ground state. The proof relies on a new formulation of the problem in terms of the total density and spin functions, which turns the energy into the sum of two weighted Cahn–Hilliard energies. Then, we use techniques coming from geometric measure theory to construct upper and lower bounds. In particular, we make use of the slicing technique introduced in Ambrosio and Tortorelli (Commun Pure Appl Math 43(8):999–1036, 1990).en
dc.relation.isversionofjnlnameCalculus of Variations and Partial Differential Equations
dc.relation.isversionofjnlvol52
dc.relation.isversionofjnlissue1-2
dc.relation.isversionofjnldate2015
dc.relation.isversionofjnlpages165-197
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/s00526-014-0708-yen
dc.identifier.urlsitehttp://arxiv.org/abs/1304.6650v1en
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record