Auteur
Salmon, Joseph
Deledalle, Charles-Alban
Vaiter, Samuel
Peyré, Gabriel
Fadili, Jalal
Type
Communication / Conférence
Nombre de pages du document
4
Résumé en français
Cet article traite des propriétés structurelles des solutions de problèmes inverses avec régularisation favorisant des modèles de faible complexité. Plus exactement, la régularisation appartient à la classe générique de semi-normes définies comme des normes décomposables composées par un opérateur linéaire, d'où l'a priori décomposable type analyse. Nous proposons une analyse théorique unifiée des propriétés structurelles des solutions de problèmes inverses. Nous prouvons de nouveaux résultats d'unicité et des bornes de stabilité. Notre cadre inclut de nombreux cas particuliers comme la variation totale discrète, le Lasso par blocs analyse ou alors la norme nucléaire. Nos résultats principaux établissent des conditions suffisantes garantissant l'unicité de la solution régularisée et sa stabilité à un bruit arbitraire borné. En chemin, nous montrons une condition suffisante fine d'unicité dont la portée va bien au delà des normes décomposables.
Résumé en anglais
In this paper, we investigate in a unified way the structural properties of solutions to inverse problems. These solutions are regularized by the generic class of semi-norms defined as a decomposable norm composed with a linear operator, the so-called analysis type decomposable prior. This encompasses several well-known analysis-type regularizations such as the discrete total variation (in any dimension), analysis group-Lasso or the nuclear norm. Our main results establish sufficient conditions under which uniqueness and stability to a bounded noise of the regularized solution are guaranteed. Along the way, we also provide a strong sufficient uniqueness result that is of independent interest and goes beyond the case of decomposable norms.