Mean field games systems of first order
Cardaliaguet, Pierre; Graber, Philip Jameson (2015), Mean field games systems of first order, ESAIM. COCV, 21, 3, p. 690-722. 10.1051/cocv/2014044
Type
Article accepté pour publication ou publiéExternal document link
https://arxiv.org/abs/1401.1789v1Date
2015Journal name
ESAIM. COCVVolume
21Number
3Publisher
EDP sciences
Published in
Paris
Pages
690-722
Publication identifier
Metadata
Show full item recordAbstract (EN)
We consider a system of mean field games with local coupling in the deterministic limit. Under general structure conditions on the Hamiltonian and coupling, we prove existence and uniqueness of the weak solution, characterizing this solution as the minimizer of some optimal control of Hamilton-Jacobi and continuity equations. We also prove that this solution converges in the long time average to the solution of the associated ergodic problem.Subjects / Keywords
nonlinear PDE; optimal control; transport theory; long time average; Hamilton-Jacobi equations; mean field gamesRelated items
Showing items related by title and author.
-
Porretta, Alessio; Graber, Philip Jameson; Cardaliaguet, Pierre; Tonon, Daniela (2014) Communication / Conférence
-
Cardaliaguet, Pierre; Graber, Philip Jameson; Porretta, Alessio; Tonon, Daniela (2015) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2022) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre (2013) Article accepté pour publication ou publié
-
Graber, Philip Jameson; Mészáros, Alpár Richárd; Silva, Francisco J.; Tonon, Daniela (2019) Article accepté pour publication ou publié