Clustering constrained symbolic data
De A. T. De Carvalho, Francisco; Csernel, Marc; Lechevallier, Yves (2009), Clustering constrained symbolic data, Pattern Recognition Letters, 30, 11, p. 1037–1045. http://dx.doi.org/10.1016/j.patrec.2009.04.009
Type
Article accepté pour publication ou publiéDate
2009-08Journal name
Pattern Recognition LettersVolume
30Number
11Publisher
Elsevier
Pages
1037–1045
Publication identifier
Metadata
Show full item recordAbstract (EN)
Dealing with multi-valued data has become quite common in both the framework of databases as well as data analysis. Such data can be constrained by domain knowledge provided by relations between the variables and these relations are expressed by rules. However, such knowledge can introduce a combinatorial increase in the computation time depending on the number of rules. In this paper, we present a way to cluster such data in polynomial time. The method is based on the following: a decomposition of the data according to the rules, a suitable dissimilarity function and a clustering algorithm based on dissimilarities.Subjects / Keywords
Symbolic Data Analysis; Clustering algorithms; Normal symbolic form; Constraints; Dissimilarity functionsRelated items
Showing items related by title and author.
-
Silva, K.P.; De A. T. De Carvalho, Francisco; Csernel, Marc (2009-06) Communication / Conférence
-
Silva, K.P.; De A. T. De Carvalho, Francisco; Csernel, Marc (2008) Communication / Conférence
-
da Silva, Alzennyr; De A. T. De Carvalho, Francisco; Lechevallier, Yves; Trousse, Brigitte (2006) Communication / Conférence
-
Rossi, Fabrice; Lechevallier, Yves; Hugueney, Bernard; Hébrail, Georges (2010) Article accepté pour publication ou publié
-
Collectif Revue Des Nouvelles Technologies De L'information,; Diday, Edwin; Saporta, Gilbert; Lechevallier, Yves; Guan, Rong; Wang, Huiwen (2020) Ouvrage