• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Kidney Detection and Segmentation in Contrast-Enhanced Ultrasound 3D Images

Ardon, Roberto; Cohen, Laurent D.; Corréas, Jean-Michel; Cuingnet, O.; Mory, Benoît; Prevost, Raphaël (2014), Kidney Detection and Segmentation in Contrast-Enhanced Ultrasound 3D Images, in Suri, Jasjit, Abdomen and Thoracic Imaging. An Engineering & Clinical Perspective, Springer : Berlin Heidelberg, p. 773

Type
Chapitre d'ouvrage
Date
2014
Book title
Abdomen and Thoracic Imaging. An Engineering & Clinical Perspective
Book author
Suri, Jasjit
Publisher
Springer
Published in
Berlin Heidelberg
ISBN
978-1-4614-8497-4
Pages
773
Metadata
Show full item record
Author(s)
Ardon, Roberto

Cohen, Laurent D.

Corréas, Jean-Michel

Cuingnet, O.

Mory, Benoît

Prevost, Raphaël
Abstract (EN)
Contrast-enhanced ultrasound (CEUS) imaging has lately benefited of an increasing interest for diagnosis and intervention planning, as it allows to visualize blood flow in real-time harmlessly for the patient. It complements thus the anatomical information provided by conventional ultrasound (US). This chapter is dedicated to kidney segmentation methods in 3D CEUS images. First we present a generic and fast two-step approach to locate (via a robust ellipsoid estimation algorithm) and segment (using a template deformation framework) the kidney automatically. Then we show how user interactions can be integrated within the algorithm to guide or correct the segmentation in real-time. Finally, we develop a co-segmentation framework that generalizes the aforementioned method and allows the simultaneous use of multiple images (here the CEUS and the US images) to improve the segmentation result. The different approaches are evaluated on a clinical database of 64 volumes.
Subjects / Keywords
Detection; Kidney; Segmentation; Contrast; 3D Ultrasound; CEUS

Related items

Showing items related by title and author.

  • Thumbnail
    Kidney detection and real-time segmentation in 3D contrast-enhanced ultrasound images 
    Ardon, Roberto; Cohen, Laurent D.; Corréas, Jean-Michel; Mory, Benoît; Prevost, Raphaël (2012) Communication / Conférence
  • Thumbnail
    Automatic detection and segmentation of renal lesions in 3D contrast-enhanced ultrasound images 
    Prevost, Raphaël; Cohen, Laurent D.; Corréas, Jean-Michel; Ardon, Roberto (2012) Communication / Conférence
  • Thumbnail
    Joint Co-segmentation and Registration of 3D Ultrasound Images 
    Ardon, Roberto; Cohen, Laurent D.; Corréas, Jean-Michel; Cuingnet, Rémi; Mory, Benoît; Prevost, Raphaël (2013) Communication / Conférence
  • Thumbnail
    Automatic Detection and Segmentation of Kidneys in 3D CT Images Using Random Forests 
    Ardon, Roberto; Cohen, Laurent D.; Cuingnet, Rémi; Lesage, David; Mory, Benoît; Prevost, Raphaël (2012) Communication / Conférence
  • Thumbnail
    Incorporating Shape Variability in Image Segmentation via Implicit Template Deformation 
    Ardon, Roberto; Cohen, Laurent D.; Cuingnet, Rémi; Mory, Benoît; Prevost, Raphaël (2013) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo