• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Ergodic theorems for extended real-valued random variables

Hess, Christian; Seri, Raffaello; Choirat, Christine (2010), Ergodic theorems for extended real-valued random variables, Stochastic Processes and their Applications, 120, 10, p. 1908-1919. http://dx.doi.org/10.1016/j.spa.2010.05.008

Type
Article accepté pour publication ou publié
Date
2010
Journal name
Stochastic Processes and their Applications
Volume
120
Number
10
Publisher
Elsevier
Pages
1908-1919
Publication identifier
http://dx.doi.org/10.1016/j.spa.2010.05.008
Metadata
Show full item record
Author(s)
Hess, Christian
Seri, Raffaello
Choirat, Christine
Abstract (EN)
We first establish a general version of the Birkhoff Ergodic Theorem for quasi-integrable extended real-valued random variables without assuming ergodicity. The key argument involves the Poincaré Recurrence Theorem. Our extension of the Birkhoff Ergodic Theorem is also shown to hold for asymptotic mean stationary sequences. This is formulated in terms of necessary and sufficient conditions. In particular, we examine the case where the probability space is endowed with a metric and we discuss the validity of the Birkhoff Ergodic Theorem for continuous random variables. The interest of our results is illustrated by an application to the convergence of statistical transforms, such as the moment generating function or the characteristic function, to their theoretical counterparts.
Subjects / Keywords
Birkhoff’s Ergodic Theorem; Asymptotic mean stationarity; Extended real-valued random variables; Non-integrable random variables; Cesaro convergence; Conditional expectation

Related items

Showing items related by title and author.

  • Thumbnail
    A Lévy Type Martingale Convergence Theorem for Random Sets with Unbounded Values 
    Hess, Christian; Couvreux, Jérôme (1999) Article accepté pour publication ou publié
  • Thumbnail
    The Largest Class of Closed Convex Valued Multifunctions for which Effros Measurability and Scalar Measurability Coincide 
    Hess, Christian; Barbati, Alberto (1998) Article accepté pour publication ou publié
  • Thumbnail
    Batch SOM algorithms for interval-valued data with automatic weighting of the variables 
    Carvalho, Francisco de A.T. de; Bertrand, Patrice; Simões, Eduardo C. (2016) Article accepté pour publication ou publié
  • Thumbnail
    A Liouville theorem for vector valued semilinear heat equations with no gradient structure and applications to blow-up 
    Zaag, Hatem; Nouaili, Nejla (2010) Article accepté pour publication ou publié
  • Thumbnail
    Computing the mean and the variance of the cedent's share for largest claims reinsurance covers 
    Hess, Christian (2009) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo