dc.contributor.author | Tykesson, Johan | |
dc.contributor.author | Lacoin, Hubert | |
dc.date.accessioned | 2014-01-10T16:30:52Z | |
dc.date.available | 2014-01-10T16:30:52Z | |
dc.date.issued | 2013 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/12405 | |
dc.language.iso | en | en |
dc.subject | Random Walk | en |
dc.subject | Percolation | en |
dc.subject | Connectivity | en |
dc.subject | Random Interlacement | en |
dc.subject.ddc | 519 | en |
dc.title | On the easiest way to connect $k$ points in the Random Interlacements process | en |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | Department of Computer Science and Applied Mathematics http://www.wisdom.weizmann.ac.il/ Weizmann Institute of Science;Israël | |
dc.description.abstracten | We consider the random interlacements process with intensity $u$ on ${\mathbb Z}^d$, $d\ge 5$ (call it $I^u$), built from a Poisson point process on the space of doubly infinite nearest neighbor trajectories on ${\mathbb Z}^d$. For $k\ge 3$ we want to determine the minimal number of trajectories from the point process that is needed to link together $k$ points in $\mathcal I^u$. Let $$n(k,d):=\lceil \frac d 2 (k-1) \rceil - (k-2).$$ We prove that almost surely given any $k$ points $x_1,...,x_k\in \mathcal I^u$, there is a sequence ofof $n(k,d)$ trajectories $\gamma^1,...,\gamma^{n(k,d)}$ from the underlying Poisson point process such that the union of their traces $\bigcup_{i=1}^{n(k,d)}\tr(\gamma^{i})$ is a connected set containing $x_1,...,x_k$. Moreover we show that this result is sharp, i.e. that a.s. one can find $x_1,...,x_k in I^u$ that cannot be linked together by $n(k,d)-1$ trajectories. | en |
dc.relation.isversionofjnlname | Alea | |
dc.relation.isversionofjnlvol | 10 | en |
dc.relation.isversionofjnldate | 2013 | |
dc.relation.isversionofjnlpages | 505-524 | en |
dc.identifier.urlsite | http://fr.arxiv.org/abs/1206.4216 | en |
dc.relation.isversionofjnlpublisher | Instituto nacional de matemática pura e aplicada | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |