Show simple item record

dc.contributor.authorTykesson, Johan
dc.contributor.authorLacoin, Hubert
dc.date.accessioned2014-01-10T16:30:52Z
dc.date.available2014-01-10T16:30:52Z
dc.date.issued2013
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/12405
dc.language.isoenen
dc.subjectRandom Walken
dc.subjectPercolationen
dc.subjectConnectivityen
dc.subjectRandom Interlacementen
dc.subject.ddc519en
dc.titleOn the easiest way to connect $k$ points in the Random Interlacements processen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherDepartment of Computer Science and Applied Mathematics http://www.wisdom.weizmann.ac.il/ Weizmann Institute of Science;Israël
dc.description.abstractenWe consider the random interlacements process with intensity $u$ on ${\mathbb Z}^d$, $d\ge 5$ (call it $I^u$), built from a Poisson point process on the space of doubly infinite nearest neighbor trajectories on ${\mathbb Z}^d$. For $k\ge 3$ we want to determine the minimal number of trajectories from the point process that is needed to link together $k$ points in $\mathcal I^u$. Let $$n(k,d):=\lceil \frac d 2 (k-1) \rceil - (k-2).$$ We prove that almost surely given any $k$ points $x_1,...,x_k\in \mathcal I^u$, there is a sequence ofof $n(k,d)$ trajectories $\gamma^1,...,\gamma^{n(k,d)}$ from the underlying Poisson point process such that the union of their traces $\bigcup_{i=1}^{n(k,d)}\tr(\gamma^{i})$ is a connected set containing $x_1,...,x_k$. Moreover we show that this result is sharp, i.e. that a.s. one can find $x_1,...,x_k in I^u$ that cannot be linked together by $n(k,d)-1$ trajectories.en
dc.relation.isversionofjnlnameAlea
dc.relation.isversionofjnlvol10en
dc.relation.isversionofjnldate2013
dc.relation.isversionofjnlpages505-524en
dc.identifier.urlsitehttp://fr.arxiv.org/abs/1206.4216en
dc.relation.isversionofjnlpublisherInstituto nacional de matemática pura e aplicadaen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record