• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Sharp Interpolation Inequalities on the Sphere: New Methods and Consequences

Dolbeault, Jean; Esteban, Maria J.; Kowalczyk, Michal; Loss, Michael (2014), Sharp Interpolation Inequalities on the Sphere: New Methods and Consequences, in Ciarlet, Philippe G.; Li, Tatsien; Maday, Yvon, Partial Differential Equations: Theory, Control and Approximation. In Honor of the Scientific Heritage of Jacques-Louis Lions, Springer : Berlin, p. 225-242. http://dx.doi.org/10.1007/978-3-642-41401-5_9

Type
Chapitre d'ouvrage
External document link
http://hal.archives-ouvertes.fr/hal-00739140
Date
2014
Book title
Partial Differential Equations: Theory, Control and Approximation. In Honor of the Scientific Heritage of Jacques-Louis Lions
Book author
Ciarlet, Philippe G.; Li, Tatsien; Maday, Yvon
Publisher
Springer
Published in
Berlin
ISBN
978-3-642-41400-8
Number of pages
429
Pages
225-242
Publication identifier
http://dx.doi.org/10.1007/978-3-642-41401-5_9
Metadata
Show full item record
Author(s)
Dolbeault, Jean cc
Esteban, Maria J. cc
Kowalczyk, Michal
Loss, Michael
Abstract (EN)
This paper is devoted to various considerations on a family of sharp interpolation inequalities on the sphere, which in dimension greater than 1 interpolate between Poincaré, logarithmic Sobolev and critical Sobolev (Onofri in dimension two) inequalities. The connection between optimal constants and spectral properties of the Laplace-Beltrami operator on the sphere is emphasized. The authors address a series of related observations and give proofs based on symmetrization and the ultraspherical setting.
Subjects / Keywords
Inequality; Interpolation; Gagliardo-Nirenberg inequality; Logarithmic Sobolev inequality; Heat equation

Related items

Showing items related by title and author.

  • Thumbnail
    Sharp interpolation inequalities on the sphere: new methods and consequences 
    Loss, Michael; Kowalczyk, Michal; Esteban, Maria J.; Dolbeault, Jean (2013) Article accepté pour publication ou publié
  • Thumbnail
    Improved interpolation inequalities on the sphere 
    Loss, Michael; Kowalczyk, Michal; Esteban, Maria J.; Dolbeault, Jean (2014) Article accepté pour publication ou publié
  • Thumbnail
    Interpolation inequalities on the sphere: linear vs. nonlinear flows 
    Dolbeault, Jean; Esteban, Maria J.; Loss, Michael (2017) Article accepté pour publication ou publié
  • Thumbnail
    Uniqueness and rigidity in nonlinear elliptic equations, interpolation inequalities and spectral estimates 
    Dolbeault, Jean; Kowalczyk, Michal (2017) Article accepté pour publication ou publié
  • Thumbnail
    Interpolation inequalities, nonlinear flows, boundary terms, optimality and linearization 
    Dolbeault, Jean; Esteban, Maria J.; Loss, Michael (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo