Show simple item record

dc.contributor.authorFéjoz, Jacques
dc.date.accessioned2013-12-13T15:20:12Z
dc.date.available2013-12-13T15:20:12Z
dc.date.issued2013
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/12289
dc.language.isoenen
dc.subjectperturbation theoryen
dc.subjectintegrabilityen
dc.subjectfirst integralen
dc.subjectplanetary problemen
dc.subjectPoincaré coordinatesen
dc.subjecttwo-body problemen
dc.subjectKepler problemen
dc.subjectadiabatic invariantsen
dc.subjectLiouville-Arnold theoremen
dc.subjectaction-angle coordinatesen
dc.subjectLagrangian fibrationen
dc.subjectHamiltonian systemen
dc.subject.ddc516en
dc.titleOn Action-angle coordinates and the Poincaré Coordinatesen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherInstitut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE) http://www.imcce.fr/ CNRS : UMR8028 – INSU – Observatoire de Paris – Université Pierre et Marie Curie (UPMC) - Paris VI – Université Lille I - Sciences et technologies;France
dc.description.abstractenThis article is a review of two related classical topics of Hamiltonian systems and celestial mechanics. The first section deals with the existence and construction of action-angle coordinates, which we describe emphasizing the role of the natural adiabatic invariants ''$\oint_\gamma p\, dq$''. The second section is the construction and properties of the Poincaré coordinates in the Kepler problem, adapting the principles of the former section, in an attempt to use known first integrals more directly than Poincaré did.en
dc.relation.isversionofjnlnameRegular and Chaotic Dynamics
dc.relation.isversionofjnlvol18en
dc.relation.isversionofjnlissue6en
dc.relation.isversionofjnldate2013
dc.relation.isversionofjnlpages708-723en
dc.relation.isversionofdoihttp://dx.doi.org/10.1134/S1560354713060105
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelGéométrieen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record