
On Action-angle coordinates and the Poincaré Coordinates
Féjoz, Jacques (2013), On Action-angle coordinates and the Poincaré Coordinates, Regular and Chaotic Dynamics, 18, 6, p. 708-723. http://dx.doi.org/10.1134/S1560354713060105
View/ Open
Type
Article accepté pour publication ou publiéDate
2013Journal name
Regular and Chaotic DynamicsVolume
18Number
6Publisher
Springer
Pages
708-723
Publication identifier
Metadata
Show full item recordAuthor(s)
Féjoz, JacquesAbstract (EN)
This article is a review of two related classical topics of Hamiltonian systems and celestial mechanics. The first section deals with the existence and construction of action-angle coordinates, which we describe emphasizing the role of the natural adiabatic invariants ''$\oint_\gamma p\, dq$''. The second section is the construction and properties of the Poincaré coordinates in the Kepler problem, adapting the principles of the former section, in an attempt to use known first integrals more directly than Poincaré did.Subjects / Keywords
perturbation theory; integrability; first integral; planetary problem; Poincaré coordinates; two-body problem; Kepler problem; adiabatic invariants; Liouville-Arnold theorem; action-angle coordinates; Lagrangian fibration; Hamiltonian systemRelated items
Showing items related by title and author.
-
Bounemoura, Abed; Féjoz, Jacques (2017-06) Article accepté pour publication ou publié
-
Chenciner, Alain; Féjoz, Jacques (2009) Article accepté pour publication ou publié
-
Kirkwood gaps and diffusion along mean motion resonances in the restricted planar three-body problem Féjoz, Jacques; Guardia, Marcel; Kaloshin, Vadim; Roldán, Pablo (2016) Article accepté pour publication ou publié
-
Féjoz, Jacques; Garay, Mauricio (2010) Article accepté pour publication ou publié
-
Chenciner, Alain; Féjoz, Jacques (2008) Article accepté pour publication ou publié