Registration of Free-Breathing 3D+t Abdominal Perfusion CT Images via Co-segmentation
Lucidarme, Olivier; Rouet, Laurence; Mory, Benoît; Cuingnet, Rémi; Romain, Blandine; Prevost, Raphaël (2013), Registration of Free-Breathing 3D+t Abdominal Perfusion CT Images via Co-segmentation, dans Navab, Nassir; Barillot, Christian; Sato, Yoshinobu; Sakuma, Ichiro; Mori, Kensaku, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013, Springer, p. 99-107. http://dx.doi.org/10.1007/978-3-642-40763-5_13
Type
Communication / ConférenceDate
2013Titre du colloque
MICCAI 2013Date du colloque
2013-08Ville du colloque
NagoyaPays du colloque
JaponTitre de l'ouvrage
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013Auteurs de l’ouvrage
Navab, Nassir; Barillot, Christian; Sato, Yoshinobu; Sakuma, Ichiro; Mori, KensakuÉditeur
Springer
Titre de la collection
Lecture Notes in Computer ScienceNuméro dans la collection
8150Isbn
Print ISBN 978-3-642-40762-8 Online ISBN 978-3-642-40763-5
Pages
99-107
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Lucidarme, Olivier
Rouet, Laurence
Mory, Benoît
Cuingnet, Rémi
Romain, Blandine
Prevost, Raphaël
Résumé (EN)
Dynamic contrast-enhanced computed tomography (DCE-CT) is a valuable imaging modality to assess tissues properties, particularly in tumours, by estimating pharmacokinetic parameters from the evolution of pixels intensities in 3D+t acquisitions. However, this requires a registration of the whole sequence of volumes, which is challenging especially when the patient breathes freely. In this paper, we propose a generic, fast and automatic method to address this problem. As standard iconic registration methods are not robust to contrast intake, we rather rely on the segmentation of the organ of interest. This segmentation is performed jointly with the registration of the sequence within a novel co-segmentation framework. Our approach is based on implicit template deformation, that we extend to a co-segmentation algorithm which provides as outputs both a segmentation of the organ of interest in every image and stabilising transformations for the whole sequence. The proposed method is validated on 15 datasets acquired from patients with renal lesions and shows improvement in terms of registration and estimation of pharmacokinetic parameters over the state-of-the-art method.Mots-clés
Health Informatics; Imaging / Radiology; Artificial Intelligence (incl. Robotics); Computer Graphics; Pattern Recognition; Image Processing and Computer VisionPublications associées
Affichage des éléments liés par titre et auteur.
-
Ardon, Roberto; Cohen, Laurent D.; Corréas, Jean-Michel; Cuingnet, Rémi; Mory, Benoît; Prevost, Raphaël (2013) Communication / Conférence
-
Ardon, Roberto; Cohen, Laurent D.; Cuingnet, Rémi; Lesage, David; Mory, Benoît; Prevost, Raphaël (2012) Communication / Conférence
-
Ardon, Roberto; Cohen, Laurent D.; Cuingnet, Rémi; Mory, Benoît; Prevost, Raphaël (2013) Communication / Conférence
-
Ardon, Roberto; Cohen, Laurent D.; Corréas, Jean-Michel; Cuingnet, O.; Mory, Benoît; Prevost, Raphaël (2014) Chapitre d'ouvrage
-
Cuingnet, Rémi; Somphone, Oudom; Mory, Benoît; Prevost, Raphaël; Yaqub, Mohammad; Napolitano, Raffaele; Papageorghiou, A.; Roundhill, David; Noble, J. Alison; Ardon, Roberto (2013) Communication / Conférence