• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - Request a copy

Joint Co-segmentation and Registration of 3D Ultrasound Images

Ardon, Roberto; Cohen, Laurent D.; Corréas, Jean-Michel; Cuingnet, Rémi; Mory, Benoît; Prevost, Raphaël (2013), Joint Co-segmentation and Registration of 3D Ultrasound Images, dans Zöllei, Lilla, IPMI 2013, Springer : Berlin Heidelberg, p. 782

Type
Communication / Conférence
Date
2013
Pays du colloque
UNITED STATES
Titre de l'ouvrage
IPMI 2013
Auteurs de l’ouvrage
Zöllei, Lilla
Éditeur
Springer
Ville d’édition
Berlin Heidelberg
Isbn
978-3-642-3886
Pages
782
Métadonnées
Afficher la notice complète
Auteur(s)
Ardon, Roberto

Cohen, Laurent D.

Corréas, Jean-Michel

Cuingnet, Rémi

Mory, Benoît

Prevost, Raphaël
Résumé (EN)
Contrast-enhanced ultrasound (CEUS) allows a visualization of the vascularization and complements the anatomical information provided by conventional ultrasound (US). However, these images are inherently subject to noise and shadows, which hinders standard segmentation algorithms. In this paper, we propose to use simultaneously the different information coming from 3D US and CEUS images to address the problem of kidney segmentation. To that end, we introduce a generic framework for joint co-segmentation and registration that seeks objects having the same shape in several images. From this framework, we derive both an ellipsoid co-detection and a model-based co-segmentation algorithm. These methods rely on voxel-classification maps that we estimate using random forests in a structured way. This yields a fast and fully automated pipeline, in which an ellipsoid is first estimated to locate the kidney in both US and CEUS volumes and then deformed to segment it accurately. The proposed method outperforms state-of-the-art results (by dividing the kidney volume error by two) on a clinically representative database of 64 images.
Mots-clés
ultrasound; random forests; kidney; registration; co-segmentation

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Kidney Detection and Segmentation in Contrast-Enhanced Ultrasound 3D Images 
    Ardon, Roberto; Cohen, Laurent D.; Corréas, Jean-Michel; Cuingnet, O.; Mory, Benoît; Prevost, Raphaël (2014) Chapitre d'ouvrage
  • Vignette de prévisualisation
    Kidney detection and real-time segmentation in 3D contrast-enhanced ultrasound images 
    Ardon, Roberto; Cohen, Laurent D.; Corréas, Jean-Michel; Mory, Benoît; Prevost, Raphaël (2012) Communication / Conférence
  • Vignette de prévisualisation
    Automatic Detection and Segmentation of Kidneys in 3D CT Images Using Random Forests 
    Ardon, Roberto; Cohen, Laurent D.; Cuingnet, Rémi; Lesage, David; Mory, Benoît; Prevost, Raphaël (2012) Communication / Conférence
  • Vignette de prévisualisation
    Automatic detection and segmentation of renal lesions in 3D contrast-enhanced ultrasound images 
    Prevost, Raphaël; Cohen, Laurent D.; Corréas, Jean-Michel; Ardon, Roberto (2012) Communication / Conférence
  • Vignette de prévisualisation
    Incorporating Shape Variability in Image Segmentation via Implicit Template Deformation 
    Ardon, Roberto; Cohen, Laurent D.; Cuingnet, Rémi; Mory, Benoît; Prevost, Raphaël (2013) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo