• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Using greediness for parameterization: the case of max and min (k, n − k)-cut

Bonnet, Édouard; Escoffier, Bruno; Paschos, Vangelis; Tourniaire, Emeric (2012), Using greediness for parameterization: the case of max and min (k, n − k)-cut. https://basepub.dauphine.fr/handle/123456789/12148

View/Open
cahier_330.pdf (1.749Mb)
Type
Document de travail / Working paper
Date
2012
Publisher
Université Paris-Dauphine
Series title
Cahiers du Lamsade
Published in
Paris
Pages
13
Metadata
Show full item record
Author(s)
Bonnet, Édouard cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Escoffier, Bruno
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Paschos, Vangelis
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Tourniaire, Emeric
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
MAX (k, n−k)-CUT (resp., MIN (k, n−k)-CUT) is a constrained version of MAX-CUT (resp.,MIN-CUT) where one has to find a bipartition of the vertex set into two subsets with respectively k and n − k vertices (n being the total number of vertices of the input graph) which maximizes (resp., minimizes) the number of edges going from one subset to the other. In this paper, we investigate the parameterized complexity of these two graph problems by considering several parameters, such as the value p of the solution, k, the size á of a minimum vertex cover and the treewidth tw of the input graph. We also give approximation schemata in FPT time for parameterizations which turn out to be W[1]-hard.
Subjects / Keywords
Algorithme et structure de données; Complexité

Related items

Showing items related by title and author.

  • Thumbnail
    Multi-parameter Analysis for Local Graph Partitioning Problems: Using Greediness for Parameterization 
    Bonnet, Édouard; Escoffier, Bruno; Paschos, Vangelis; Tourniaire, Emeric (2015) Article accepté pour publication ou publié
  • Thumbnail
    Approximating MAX SAT by Moderately Exponential and Parameterized Algorithms 
    Escoffier, Bruno; Paschos, Vangelis; Tourniaire, Emeric (2014) Article accepté pour publication ou publié
  • Thumbnail
    Approximating MAX SAT by moderately exponential algorithms 
    Escoffier, Bruno; Paschos, Vangelis; Tourniaire, Emeric (2012) Communication / Conférence
  • Thumbnail
    Differential approximation of MIN SAT, MAX SAT and related problems 
    Escoffier, Bruno; Paschos, Vangelis (2005) Communication / Conférence
  • Thumbnail
    Differential approximation of MIN SAT, MAX SAT and related problems 
    Paschos, Vangelis; Escoffier, Bruno (2007) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo