Best Basis Compressed Sensing
Peyré, Gabriel (2010), Best Basis Compressed Sensing, IEEE Transactions on Signal Processing, 58, 5, p. 2613-2622. http://dx.doi.org/10.1109/TSP.2010.2042490
Type
Article accepté pour publication ou publiéLien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00365607/en/Date
2010Nom de la revue
IEEE Transactions on Signal ProcessingVolume
58Numéro
5Éditeur
IEEE
Pages
2613-2622
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Peyré, GabrielRésumé (EN)
This paper proposes a best basis extension of compressed sensing recovery. Instead of regularizing the compressed sensing inverse problem with a sparsity prior in a fixed basis, our framework makes use of sparsity in a tree-structured dictionary of orthogonal bases. A new iterative thresholding algorithm performs both the recovery of the signal and the estimation of the best basis. The resulting reconstruction from compressive measurements optimizes the basis to the structure of the sensed signal. Adaptivity is crucial to capture the regularity of complex natural signals. Numerical experiments on sounds and geometrical images indeed show that this best basis search improves the recovery with respect to fixed sparsity priors.Mots-clés
bandlets; best basis; compressed sensing; cosine packets; sparsity; wavelet packetsPublications associées
Affichage des éléments liés par titre et auteur.
-
Peyré, Gabriel (2007) Communication / Conférence
-
Ouarti, Nizar; Peyré, Gabriel (2009) Communication / Conférence
-
Fadili, Jalal; Peyré, Gabriel; Dossal, Charles (2009-04) Communication / Conférence
-
Fadili, Jalal; Peyré, Gabriel; Dossal, Charles (2010) Article accepté pour publication ou publié
-
Peyré, Gabriel (2006) Communication / Conférence