Best Basis Compressed Sensing
Peyré, Gabriel (2010), Best Basis Compressed Sensing, IEEE Transactions on Signal Processing, 58, 5, p. 2613-2622. http://dx.doi.org/10.1109/TSP.2010.2042490
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00365607/en/Date
2010Journal name
IEEE Transactions on Signal ProcessingVolume
58Number
5Publisher
IEEE
Pages
2613-2622
Publication identifier
Metadata
Show full item recordAuthor(s)
Peyré, GabrielAbstract (EN)
This paper proposes a best basis extension of compressed sensing recovery. Instead of regularizing the compressed sensing inverse problem with a sparsity prior in a fixed basis, our framework makes use of sparsity in a tree-structured dictionary of orthogonal bases. A new iterative thresholding algorithm performs both the recovery of the signal and the estimation of the best basis. The resulting reconstruction from compressive measurements optimizes the basis to the structure of the sensed signal. Adaptivity is crucial to capture the regularity of complex natural signals. Numerical experiments on sounds and geometrical images indeed show that this best basis search improves the recovery with respect to fixed sparsity priors.Subjects / Keywords
bandlets; best basis; compressed sensing; cosine packets; sparsity; wavelet packetsRelated items
Showing items related by title and author.
-
Peyré, Gabriel (2007) Communication / Conférence
-
Ouarti, Nizar; Peyré, Gabriel (2009) Communication / Conférence
-
Fadili, Jalal; Peyré, Gabriel; Dossal, Charles (2009-04) Communication / Conférence
-
Fadili, Jalal; Peyré, Gabriel; Dossal, Charles (2010) Article accepté pour publication ou publié
-
Peyré, Gabriel (2006) Communication / Conférence